cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120043 Number of 12-almost primes 12ap such that 2^n < 12ap <= 2^(n+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 47, 103, 234, 492, 1082, 2271, 4867, 10349, 21794, 45907, 96293, 202006, 421287, 879388, 1828931, 3800227, 7882784, 16325796, 33771056, 69767214, 143971956, 296771231, 611156696, 1257374970
Offset: 0

Views

Author

Keywords

Comments

The partial sum equals the number of Pi_12(2^n).

Examples

			(2^12, 2^13] there is one semiprime, namely 6144. 4096 was counted in the previous entry.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    t = Table[AlmostPrimePi[12, 2^n], {n, 0, 30}]; Rest@t - Most@t
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A120043(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def almostprimepi(n,k): return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
        return -almostprimepi(m:=1<Chai Wah Wu, Aug 31 2024