cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120054 a(n) = binomial(n+3,4)*4^4.

Original entry on oeis.org

256, 1280, 3840, 8960, 17920, 32256, 53760, 84480, 126720, 183040, 256256, 349440, 465920, 609280, 783360, 992256, 1240320, 1532160, 1872640, 2266880, 2720256, 3238400, 3827200, 4492800, 5241600, 6080256, 7015680, 8055040, 9205760, 10475520, 11872256, 13404160
Offset: 1

Views

Author

Zerinvary Lajos, Aug 07 2008

Keywords

Comments

Number of n permutations (n>=4) of 5 objects u, v, z, x, y with repetition allowed, containing n-4 u's. Example: if n=4 then n-4 = zero (0) u, a(1)=256, if n=5 then n-4 = one (1) u, a(2)=1280, if n=6 then n-4 = two (2) u, a(3)=3840, etc.

Crossrefs

Programs

  • Maple
    seq(binomial(n+3,4)*4^4, n=1..36);
  • Mathematica
    256*Binomial[Range[30]+3,4] (* or *) LinearRecurrence[{5,-10,10,-5,1},{256,1280,3840,8960,17920},30] (* Harvey P. Dale, Jul 19 2018 *)

Formula

G.f.: 256/(1-x)^5.
a(n) = C(n+3,4)*4^4, n>=1.
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/192.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/8 - 1/12. (End)