A120054 a(n) = binomial(n+3,4)*4^4.
256, 1280, 3840, 8960, 17920, 32256, 53760, 84480, 126720, 183040, 256256, 349440, 465920, 609280, 783360, 992256, 1240320, 1532160, 1872640, 2266880, 2720256, 3238400, 3827200, 4492800, 5241600, 6080256, 7015680, 8055040, 9205760, 10475520, 11872256, 13404160
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Maple
seq(binomial(n+3,4)*4^4, n=1..36);
-
Mathematica
256*Binomial[Range[30]+3,4] (* or *) LinearRecurrence[{5,-10,10,-5,1},{256,1280,3840,8960,17920},30] (* Harvey P. Dale, Jul 19 2018 *)
Formula
G.f.: 256/(1-x)^5.
a(n) = C(n+3,4)*4^4, n>=1.
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/192.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/8 - 1/12. (End)
Comments