cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120057 Table T(n,k) = sum over all set partitions of n of number at index k.

Original entry on oeis.org

1, 2, 3, 5, 8, 9, 15, 25, 29, 31, 52, 89, 106, 115, 120, 203, 354, 431, 474, 499, 514, 877, 1551, 1923, 2141, 2273, 2355, 2407, 4140, 7403, 9318, 10489, 11224, 11695, 12002, 12205, 21147, 38154, 48635, 55286, 59595, 62434, 64331, 65614, 66491, 115975, 210803, 271617, 311469, 338019, 355951, 368205, 376665, 382559, 386699
Offset: 1

Views

Author

Franklin T. Adams-Watters, Jun 06 2006, Jun 07 2006

Keywords

Examples

			The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}. Summing these componentwise gives the third row: 5,8,9.
Table starts:
   1;
   2,  3;
   5,  8,   9;
  15, 25,  29,  31;
  52, 89, 106, 115, 120;
  ...
		

Crossrefs

Cf. A120058, A120095. First column is A000110.
Main diagonal is A087648(n-1).
Row sums give A346772.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0],
          add((p-> [p[1], expand(p[2]*x+p[1]*j)])(
            b(n-1, max(m, j))), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0)[2]):
    seq(T(n), n=1..10);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]]*x + p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0][[2]]];
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=1..k} A120058(n,i)*B(n-i+1), where B(n) are the Bell numbers, (A000110).