A120057 Table T(n,k) = sum over all set partitions of n of number at index k.
1, 2, 3, 5, 8, 9, 15, 25, 29, 31, 52, 89, 106, 115, 120, 203, 354, 431, 474, 499, 514, 877, 1551, 1923, 2141, 2273, 2355, 2407, 4140, 7403, 9318, 10489, 11224, 11695, 12002, 12205, 21147, 38154, 48635, 55286, 59595, 62434, 64331, 65614, 66491, 115975, 210803, 271617, 311469, 338019, 355951, 368205, 376665, 382559, 386699
Offset: 1
Examples
The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}. Summing these componentwise gives the third row: 5,8,9. Table starts: 1; 2, 3; 5, 8, 9; 15, 25, 29, 31; 52, 89, 106, 115, 120; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> [p[1], expand(p[2]*x+p[1]*j)])( b(n-1, max(m, j))), j=1..m+1)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0)[2]): seq(T(n), n=1..10); # Alois P. Heinz, Mar 24 2016
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]]*x + p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0][[2]]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Alois P. Heinz *)