cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120058 Coefficients for obtaining A120057 from Bell numbers.

Original entry on oeis.org

1, 2, -1, 3, -4, 2, 4, -9, 10, -4, 5, -16, 28, -24, 8, 6, -25, 60, -80, 56, -16, 7, -36, 110, -200, 216, -128, 32, 8, -49, 182, -420, 616, -560, 288, -64, 9, -64, 280, -784, 1456, -1792, 1408, -640, 128, 10, -81, 408, -1344, 3024, -4704, 4992, -3456, 1408, -256
Offset: 1

Views

Author

Franklin T. Adams-Watters, Jun 06 2006, Jun 07 2006

Keywords

Comments

Appears to be essentially the same as A056863, but (as of Jun 06 2006) that sequence definition is unclear and there are discrepencies in the signs.
Alternating column sums appear to be 3^n.

Examples

			Table starts:
1
2,-1
3,-4,2
4,-9,10,-4
5,-16,28,-24,8
6,-25,60,-80,56,-16
		

Crossrefs

Programs

  • Mathematica
    T[n_, 1] := n; T[n_, n_] := (-1)^(n+1)*2^(n-2); T[n_, k_] /; 2 <= k <= n-1 := T[n, k] = 2*T[n-1, k] - 2*T[n-1, k-1] + 2*T[n-2, k-1] - T[n-2, k]; T[, ] = 0; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Philippe Deléham *)

Formula

A120057(n,k) = sum_{i=1,k} T(n,i)*B(n-i+1).
T(n,k) = Sum_j A120095(n,j) * S1(j,n-k+1), where S1 is the Stirling numbers of the first kind (A008275).
Unsigned version, as an infinite lower triangular matrix, equals A007318 * A134315. - Gary W. Adamson, Oct 19 2007
T(n,k) = 2*T(n-1,k) - 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k). - Philippe Deléham, Feb 27 2012

A087648 a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).

Original entry on oeis.org

1, 3, 9, 31, 120, 514, 2407, 12205, 66491, 386699, 2388096, 15589732, 107165081, 773106715, 5836100685, 45981026703, 377230766908, 3215977070706, 28437411817135, 260380616093533, 2464930698184351, 24091925888687459, 242802079705721156, 2520198597834860148
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Comments

Sum of last number in all set partitions of n+1. E.g. The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}, so a(2) = 1+2+1+2+3 = 9. - Franklin T. Adams-Watters, Jun 07 2006
Number of partitions of the (n+2)-multiset {0,0,1,2,...,n} into distinct multisets. Also number of factorizations of 2 * Product_{i=1..n+1} prime(i) into distinct factors. - Alois P. Heinz, Jul 30 2021

Crossrefs

Main diagonal of A120057, row sums of A120095.
Column 1 of array in A322770.
Row n=2 of A346520.

Programs

  • Magma
    [(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
  • Mathematica
    f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
    (#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0,30]],3,1] (* Harvey P. Dale, Jul 20 2021 *)

A346772 Total sum of block indices of the elements over all partitions of [n].

Original entry on oeis.org

0, 1, 5, 22, 100, 482, 2475, 13527, 78476, 481687, 3117962, 21218851, 151387882, 1129430737, 8790433999, 71222812912, 599577147056, 5235054113412, 47331036294905, 442462325254995, 4270909302907430, 42514043248222709, 435920900603529954, 4599155199953703373
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2021

Keywords

Examples

			a(3) = 22 = 3 + 4 + 4 + 5 + 6, summing block indices 111, 112, 121, 122, 123 of the 5 partitions of [3]: 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0], add(
         (p-> p+[0, p[1]*j])(b(n-1, max(m, j))), j=1..m+1))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[
         Function[p, p+{0, p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} A120057(n,k).
a(n) = Sum_{k=0..n*(n-1)/2} (n+k) * A126347(n,k).
a(n) = Sum_{k=1..n} k * A270236(n,k).
Showing 1-3 of 3 results.