cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208532 Mirror image of triangle in A125185; unsigned version of A120058.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 10, 4, 5, 16, 28, 24, 8, 6, 25, 60, 80, 56, 16, 7, 36, 110, 200, 216, 128, 32, 8, 49, 182, 420, 616, 560, 288, 64, 9, 64, 280, 784, 1456, 1792, 1408, 640, 128, 10, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Equals A007318*A134309*A097806 as infinite lower triangular matrix.
Row sums are powers of 3 (A000244).
Diagonal sums are powers of 2 (A000079).

Examples

			Triangle begins :
1
2, 1
3, 4, 2
4, 9, 10, 4
5, 16, 28, 24, 8
6, 25, 60, 80, 56, 16
7, 36, 110, 200, 216, 128, 32
8, 49, 182, 420, 616, 560, 288, 64
9, 64, 280, 784, 1456, 1792, 1408, 640, 128
10, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
Triangle (1, 1, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, ...) begins :
1
1, 0
2, 1, 0
3, 4, 2, 0
4, 9, 10, 4, 0
5, 16, 28, 24, 8, 0
6, 25, 60, 80, 56, 16, 0
		

Crossrefs

Cf. Columns: A000027, A000290, A006331, A112742.
Cf. Diagonals: A011782, 2*A045623,

Formula

T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-1,k-1), T(0,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-y*x)/((1-x)*(1-(1+2*y)*x)).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A083085(n), A084567(n), A000012(n), A000027(n+1), A000244(n), A083065(n), A083076(n) for x = -3, -2, -1, 0, 1, 2, 3 respectively.

A120057 Table T(n,k) = sum over all set partitions of n of number at index k.

Original entry on oeis.org

1, 2, 3, 5, 8, 9, 15, 25, 29, 31, 52, 89, 106, 115, 120, 203, 354, 431, 474, 499, 514, 877, 1551, 1923, 2141, 2273, 2355, 2407, 4140, 7403, 9318, 10489, 11224, 11695, 12002, 12205, 21147, 38154, 48635, 55286, 59595, 62434, 64331, 65614, 66491, 115975, 210803, 271617, 311469, 338019, 355951, 368205, 376665, 382559, 386699
Offset: 1

Views

Author

Franklin T. Adams-Watters, Jun 06 2006, Jun 07 2006

Keywords

Examples

			The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}. Summing these componentwise gives the third row: 5,8,9.
Table starts:
   1;
   2,  3;
   5,  8,   9;
  15, 25,  29,  31;
  52, 89, 106, 115, 120;
  ...
		

Crossrefs

Cf. A120058, A120095. First column is A000110.
Main diagonal is A087648(n-1).
Row sums give A346772.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, [1, 0],
          add((p-> [p[1], expand(p[2]*x+p[1]*j)])(
            b(n-1, max(m, j))), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0)[2]):
    seq(T(n), n=1..10);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]]*x + p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0][[2]]];
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=1..k} A120058(n,i)*B(n-i+1), where B(n) are the Bell numbers, (A000110).

A120095 Triangle T(n,k) = total of number at last index for all set partitions of n into k parts.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 11, 15, 4, 1, 23, 57, 34, 5, 1, 47, 195, 200, 65, 6, 1, 95, 633, 1010, 550, 111, 7, 1, 191, 1995, 4704, 3850, 1281, 175, 8, 1, 383, 6177, 20874, 24255, 11886, 2646, 260, 9, 1, 767, 18915, 89800, 143115, 97272, 31458, 4992, 369, 10
Offset: 1

Views

Author

Keywords

Examples

			The set partitions of 4 objects into 2 parts are {1,1,1,2}, {1,1,2,1}, {1,1,2,2}, {1,2,1,1}, {1,2,1,2}, {1,2,2,1} and {1,2,2,2}. The last terms of these sum to 2+1+2+1+2+1+2 = 11, so T(4,2) = 11.
Table starts:
  1;
  1,  2;
  1,  5,   3;
  1, 11,  15,   4;
  1, 23,  57,  34,  5;
  1, 47, 195, 200, 65, 6;
  ...
		

Crossrefs

Row sums are A087648(n-1).

Programs

  • Magma
    A120095:= func< n,k | (&+[Binomial(j+k,j+1)*StirlingSecond(n-1,k+j-1): j in [0..1]]) >;
    [A120095(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, May 03 2023
    
  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1, add((t->
         `if`(n=1, j*x^t, b(n-1, t)))(max(m, j)), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Aug 02 2021
  • Mathematica
    b[n_, m_]:= b[n, m]= If[n==0, 1, Sum[
         If[n==1, j*x^#, b[n-1, #]]&[Max[m, j]], {j,m+1}]];
    T[n_] := Table[Coefficient[#, x, i], {i, 1, n}]&[b[n, 0]];
    Table[T[n], {n,10}]//Flatten (* Jean-François Alcover, Aug 19 2021, after Alois P. Heinz *)
  • SageMath
    def A120095(n,k):
        return sum(binomial(j+k,j+1)*stirling_number2(n-1,k+j-1) for j in range(2))
    flatten([[A120095(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, May 03 2023

Formula

T(n,k) = (k*(k+1)/2)*S2(n-1,k) + k*S2(n-1,k-1) = 1/2 (S2(n+1,k) + S2(n,k) - S2(n-1,k-2)) = k T(n-1,k) + T(n-1,k-1) + S2(n-2,k-2), where S2 is the Stirling numbers of the second kind (A008277).
Showing 1-3 of 3 results.