A087648
a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).
Original entry on oeis.org
1, 3, 9, 31, 120, 514, 2407, 12205, 66491, 386699, 2388096, 15589732, 107165081, 773106715, 5836100685, 45981026703, 377230766908, 3215977070706, 28437411817135, 260380616093533, 2464930698184351, 24091925888687459, 242802079705721156, 2520198597834860148
Offset: 0
-
[(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
-
f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
(#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0,30]],3,1] (* Harvey P. Dale, Jul 20 2021 *)
A120057
Table T(n,k) = sum over all set partitions of n of number at index k.
Original entry on oeis.org
1, 2, 3, 5, 8, 9, 15, 25, 29, 31, 52, 89, 106, 115, 120, 203, 354, 431, 474, 499, 514, 877, 1551, 1923, 2141, 2273, 2355, 2407, 4140, 7403, 9318, 10489, 11224, 11695, 12002, 12205, 21147, 38154, 48635, 55286, 59595, 62434, 64331, 65614, 66491, 115975, 210803, 271617, 311469, 338019, 355951, 368205, 376665, 382559, 386699
Offset: 1
The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}. Summing these componentwise gives the third row: 5,8,9.
Table starts:
1;
2, 3;
5, 8, 9;
15, 25, 29, 31;
52, 89, 106, 115, 120;
...
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
add((p-> [p[1], expand(p[2]*x+p[1]*j)])(
b(n-1, max(m, j))), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 0)[2]):
seq(T(n), n=1..10); # Alois P. Heinz, Mar 24 2016
-
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]]*x + p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 0][[2]]];
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Alois P. Heinz *)
A120058
Coefficients for obtaining A120057 from Bell numbers.
Original entry on oeis.org
1, 2, -1, 3, -4, 2, 4, -9, 10, -4, 5, -16, 28, -24, 8, 6, -25, 60, -80, 56, -16, 7, -36, 110, -200, 216, -128, 32, 8, -49, 182, -420, 616, -560, 288, -64, 9, -64, 280, -784, 1456, -1792, 1408, -640, 128, 10, -81, 408, -1344, 3024, -4704, 4992, -3456, 1408, -256
Offset: 1
Table starts:
1
2,-1
3,-4,2
4,-9,10,-4
5,-16,28,-24,8
6,-25,60,-80,56,-16
-
T[n_, 1] := n; T[n_, n_] := (-1)^(n+1)*2^(n-2); T[n_, k_] /; 2 <= k <= n-1 := T[n, k] = 2*T[n-1, k] - 2*T[n-1, k-1] + 2*T[n-2, k-1] - T[n-2, k]; T[, ] = 0; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016, after Philippe Deléham *)
Showing 1-3 of 3 results.
Comments