cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120064 Shortest side b of all integer-sided triangles with sides a<=b<=c and inradius n.

Original entry on oeis.org

4, 8, 10, 14, 20, 20, 28, 28, 30, 39, 44, 40, 52, 56, 50, 56, 68, 60, 76, 70, 70, 87, 92, 80, 100, 100, 90, 97, 116, 100, 124, 112, 110, 136, 120, 120, 148, 152, 130, 140, 164, 140, 172, 154, 150, 184, 188, 160, 196, 174, 170, 182, 212, 180, 196, 189, 190, 232, 236
Offset: 1

Views

Author

Hugo Pfoertner, Jun 13 2006

Keywords

Comments

Terms a(11),..., a(100) computed by Thomas Mautsch (mautsch(AT)ethz.ch).

Examples

			a(1)=2 because the only triangle with integer sides a<=b<c and inradius 1 is {3,4,5}; its middle side is 4.
a(2)=8: The triangles with inradius 2 are {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17}. The minimum of their middle sides is min(12,8,25,15,10)=8.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Cf. A120062 [triangles with integer inradius], A120252 [primitive triangles with integer inradius], A057721 [maximum of longest sides], A120063 [minimum of longest sides], A058331 [maximum of shortest sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A007237.
See A120062 for sequences related to integer-sided triangles with integer inradius n.