cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120062 Number of triangles with integer sides a <= b <= c having integer inradius n.

Original entry on oeis.org

1, 5, 13, 18, 15, 45, 24, 45, 51, 52, 26, 139, 31, 80, 110, 89, 33, 184, 34, 145, 185, 103, 42, 312, 65, 96, 140, 225, 36, 379, 46, 169, 211, 116, 173, 498, 38, 123, 210, 328, 44, 560, 60, 280, 382, 134, 64, 592, 116, 228, 230, 271, 47, 452, 229, 510, 276, 134, 54
Offset: 1

Views

Author

Hugo Pfoertner, Jun 11 2006

Keywords

Comments

It is conjectured that the longest possible side c of a triangle with integer sides and inradius n is given by A057721(n) = n^4 + 3*n^2 + 1.
For n >= 1, a(n) >= 1 because triangle (a, b, c) = (n^2 + 2, n^4 + 2*n^2 + 1, n^4 + 3*n^2 + 1) has inradius n. - David W. Wilson, Jun 17 2006
Previous name was "Number of triangles with integer sides a<=bA362669); so, now effectively, a(10) = 52. - Bernard Schott, Apr 24 2023

Examples

			a(1)=1: {3,4,5} is the only triangle with integer sides and inradius 1.
a(2)=5: {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17} are the only triangles with integer sides and inradius 2.
a(4)=A120252(1)+A120252(2)+A120252(4)=1+4+13 because 1, 2 and 4 are the factors of 4. The 1 primitive triangle with inradius n=1 is (3,4,5). The 4 primitive triangles with n=2 are (5,12,13), (9,10,17), (7,15,20), (6,25,29). The 13 primitive triangles with n=4 are (13,14,15), (15,15,24), (11,25,30), (15,26,37), (10,35,39), (9,40,41), (33,34,65), (25,51,74), (9,75,78), (11,90,97), (21,85,104), (19,153,170), (18,289,305). (Primitive means GCD(a, b, c, n)=1.)
		

Crossrefs

Cf. A078644 [Pythagorean triangles with inradius n], A057721 [n^4+3*n^2+1].
Let S(n) be the set of triangles with integer sides a<=b<=c and inradius n. Then:
A120062(n) gives number of triangles in S(n).
A120261(n) gives number of triangles in S(n) with gcd(a, b, c) = 1.
A120252(n) gives number of triangles in S(n) with gcd(a, b, c, n) = 1.
A005408(n) = 2n+1 gives shortest short side a of triangles in S(n).
A120064(n) gives shortest middle side b of triangles in S(n).
A120063(n) gives shortest long side c of triangles in S(n).
A120570(n) gives shortest perimeter of triangles in S(n).
A120572(n) gives smallest area of triangles in S(n).
A058331(n) = 2n^2+1 gives longest short side a of triangles in S(n).
A082044(n) = n^4+2n^2+1 gives longest middle side b of triangles in S(n).
A057721(n) = n^4+3n^2+1 gives longest long side c of triangles in S(n).
A120571(n) = 2n^4+6n^2+4 gives longest perimeter of triangles in S(n).
A120573(n) = gives largest area of triangles in S(n).
Cf. A120252 [primitive triangles with integer inradius], A120063 [minimum of longest sides], A057721 [maximum of longest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A058331 [maximum of shortest sides], A007237 [number of triangles with integer sides and area = n times perimeter].

Programs

  • Mathematica
    (* See link above. *)

Formula

The even-numbered terms are given by a(2*n)=A007237(n).
a(n) = Sum_{k|n} A120252(k).

Extensions

More terms from Graeme McRae and Hugo Pfoertner, Jun 12 2006
Name corrected by Bernard Schott, Apr 24 2023

A120063 Shortest side c of all integer-sided triangles with sides a<=b<=c and inradius n.

Original entry on oeis.org

5, 10, 12, 15, 25, 24, 35, 30, 36, 39, 55, 45, 65, 63, 53, 60, 85, 68, 95, 75, 77, 88, 115, 85, 125, 130, 108, 105, 145, 106, 155, 120, 132, 170, 137, 135, 185, 190, 156, 150, 205, 154, 215, 165, 159, 230, 235, 170, 245, 195, 204, 195, 265, 204, 200, 195, 228, 290
Offset: 1

Views

Author

Hugo Pfoertner, Jun 13 2006

Keywords

Comments

Terms a(11),..., a(100) computed by Thomas Mautsch (mautsch(AT)ethz.ch).
Empirically, 2*sqrt(3) < a(n)/n <= 5. The lower bound is provably tight, the upper bound seems to be achieved infinitely often, e.g, for prime n >= 5. It appears that a(p) = 5p for prime p != 3. - David W. Wilson, Jun 17 2006
Minimum of longest side occurring among all A120062(n) triangles having integer sides with integer inradius n.

Examples

			a(1)=5 because the only triangle with integer sides and inradius 1 is {3,4,5}; its longest side is 5.
a(2)=10: The triangles with inradius 2 are {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17}. The minimum of their longest sides is min(13,10,29,20,17)=10.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A120062 [triangles with integer inradius], A120252 [primitive triangles with integer inradius], A057721 [maximum of longest sides], A058331 [maximum of shortest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A007237.
Showing 1-2 of 2 results.