cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A005408 The odd numbers: a(n) = 2*n + 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 0

Views

Author

Keywords

Comments

Leibniz's series: Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) (cf. A072172).
Beginning of the ordering of the natural numbers used in Sharkovski's theorem - see the Cielsielski-Pogoda paper.
The Sharkovski ordering begins with the odd numbers >= 3, then twice these numbers, then 4 times them, then 8 times them, etc., ending with the powers of 2 in decreasing order, ending with 2^0 = 1.
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(6).
Also continued fraction for coth(1) (A073747 is decimal expansion). - Rick L. Shepherd, Aug 07 2002
a(1) = 1; a(n) is the smallest number such that a(n) + a(i) is composite for all i = 1 to n-1. - Amarnath Murthy, Jul 14 2003
Smallest number greater than n, not a multiple of n, but containing it in binary representation. - Reinhard Zumkeller, Oct 06 2003
Numbers n such that phi(2n) = phi(n), where phi is Euler's totient (A000010). - Lekraj Beedassy, Aug 27 2004
Pi*sqrt(2)/4 = Sum_{n>=0} (-1)^floor(n/2)/(2n+1) = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 ... [since periodic f(x)=x over -Pi < x < Pi = 2(sin(x)/1 - sin(2x)/2 + sin(3x)/3 - ...) using x = Pi/4 (Maor)]. - Gerald McGarvey, Feb 04 2005
For n > 1, numbers having 2 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
a(n) = shortest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1.
First differences of squares (A000290). - Lekraj Beedassy, Jul 15 2006
The odd numbers are the solution to the simplest recursion arising when assuming that the algorithm "merge sort" could merge in constant unit time, i.e., T(1):= 1, T(n):= T(floor(n/2)) + T(ceiling(n/2)) + 1. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 14 2006
2n-5 counts the permutations in S_n which have zero occurrences of the pattern 312 and one occurrence of the pattern 123. - David Hoek (david.hok(AT)telia.com), Feb 28 2007
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A001248(k)^(n-1)); a(n) = A000005(A000302(n-1)) = A000005(A001019(n-1)) = A000005(A009969(n-1)) = A000005(A087752(n-1)). - Reinhard Zumkeller, Mar 04 2007
For n > 2, a(n-1) is the least integer not the sum of < n n-gonal numbers (0 allowed). - Jonathan Sondow, Jul 01 2007
A134451(a(n)) = abs(A134452(a(n))) = 1; union of A134453 and A134454. - Reinhard Zumkeller, Oct 27 2007
Numbers n such that sigma(2n) = 3*sigma(n). - Farideh Firoozbakht, Feb 26 2008
a(n) = A139391(A016825(n)) = A006370(A016825(n)). - Reinhard Zumkeller, Apr 17 2008
Number of divisors of 4^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Equals INVERT transform of A078050 (signed - cf. comments); and row sums of triangle A144106. - Gary W. Adamson, Sep 11 2008
Odd numbers(n) = 2*n+1 = square pyramidal number(3*n+1) / triangular number(3*n+1). - Pierre CAMI, Sep 27 2008
A000035(a(n))=1, A059841(a(n))=0. - Reinhard Zumkeller, Sep 29 2008
Multiplicative closure of A065091. - Reinhard Zumkeller, Oct 14 2008
a(n) is also the maximum number of triangles that n+2 points in the same plane can determine. 3 points determine max 1 triangle; 4 points can give 3 triangles; 5 points can give 5; 6 points can give 7 etc. - Carmine Suriano, Jun 08 2009
Binomial transform of A130706, inverse binomial transform of A001787(without the initial 0). - Philippe Deléham, Sep 17 2009
Also the 3-rough numbers: positive integers that have no prime factors less than 3. - Michael B. Porter, Oct 08 2009
Or n without 2 as prime factor. - Juri-Stepan Gerasimov, Nov 19 2009
Given an L(2,1) labeling l of a graph G, let k be the maximum label assigned by l. The minimum k possible over all L(2,1) labelings of G is denoted by lambda(G). For n > 0, this sequence gives lambda(K_{n+1}) where K_{n+1} is the complete graph on n+1 vertices. - K.V.Iyer, Dec 19 2009
A176271 = odd numbers seen as a triangle read by rows: a(n) = A176271(A002024(n+1), A002260(n+1)). - Reinhard Zumkeller, Apr 13 2010
For n >= 1, a(n-1) = numbers k such that arithmetic mean of the first k positive integers is an integer. A040001(a(n-1)) = 1. See A145051 and A040001. - Jaroslav Krizek, May 28 2010
Union of A179084 and A179085. - Reinhard Zumkeller, Jun 28 2010
For n>0, continued fraction [1,1,n] = (n+1)/a(n); e.g., [1,1,7] = 8/15. - Gary W. Adamson, Jul 15 2010
Numbers that are the sum of two sequential integers. - Dominick Cancilla, Aug 09 2010
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h and n in A000027), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 4). Also a(n)^2 - 1 == 0 (mod 8). - Bruno Berselli, Nov 17 2010
A004767 = a(a(n)). - Reinhard Zumkeller, Jun 27 2011
A001227(a(n)) = A000005(a(n)); A048272(a(n)) < 0. - Reinhard Zumkeller, Jan 21 2012
a(n) is the minimum number of tosses of a fair coin needed so that the probability of more than n heads is at least 1/2. In fact, Sum_{k=n+1..2n+1} Pr(k heads|2n+1 tosses) = 1/2. - Dennis P. Walsh, Apr 04 2012
A007814(a(n)) = 0; A037227(a(n)) = 1. - Reinhard Zumkeller, Jun 30 2012
1/N (i.e., 1/1, 1/2, 1/3, ...) = Sum_{j=1,3,5,...,infinity} k^j, where k is the infinite set of constants 1/exp.ArcSinh(N/2) = convergents to barover(N). The convergent to barover(1) or [1,1,1,...] = 1/phi = 0.6180339..., whereas c.f. barover(2) converges to 0.414213..., and so on. Thus, with k = 1/phi we obtain 1 = k^1 + k^3 + k^5 + ..., and with k = 0.414213... = (sqrt(2) - 1) we get 1/2 = k^1 + k^3 + k^5 + .... Likewise, with the convergent to barover(3) = 0.302775... = k, we get 1/3 = k^1 + k^3 + k^5 + ..., etc. - Gary W. Adamson, Jul 01 2012
Conjecture on primes with one coach (A216371) relating to the odd integers: iff an integer is in A216371 (primes with one coach either of the form 4q-1 or 4q+1, (q > 0)); the top row of its coach is composed of a permutation of the first q odd integers. Example: prime 19 (q = 5), has 5 terms in each row of its coach: 19: [1, 9, 5, 7, 3] ... [1, 1, 1, 2, 4]. This is interpreted: (19 - 1) = (2^1 * 9), (19 - 9) = (2^1 * 5), (19 - 5) = (2^1 - 7), (19 - 7) = (2^2 * 3), (19 - 3) = (2^4 * 1). - Gary W. Adamson, Sep 09 2012
A005408 is the numerator 2n-1 of the term (1/m^2 - 1/n^2) = (2n-1)/(mn)^2, n = m+1, m > 0 in the Rydberg formula, while A035287 is the denominator (mn)^2. So the quotient a(A005408)/a(A035287) simulates the Hydrogen spectral series of all hydrogen-like elements. - Freimut Marschner, Aug 10 2013
This sequence has unique factorization. The primitive elements are the odd primes (A065091). (Each term of the sequence can be expressed as a product of terms of the sequence. Primitive elements have only the trivial factorization. If the products of terms of the sequence are always in the sequence, and there is a unique factorization of each element into primitive elements, we say that the sequence has unique factorization. So, e.g., the composite numbers do not have unique factorization, because for example 36 = 4*9 = 6*6 has two distinct factorizations.) - Franklin T. Adams-Watters, Sep 28 2013
These are also numbers k such that (k^k+1)/(k+1) is an integer. - Derek Orr, May 22 2014
a(n-1) gives the number of distinct sums in the direct sum {1,2,3,..,n} + {1,2,3,..,n}. For example, {1} + {1} has only one possible sum so a(0) = 1. {1,2} + {1,2} has three distinct possible sums {2,3,4} so a(1) = 3. {1,2,3} + {1,2,3} has 5 distinct possible sums {2,3,4,5,6} so a(2) = 5. - Derek Orr, Nov 22 2014
The number of partitions of 4*n into at most 2 parts. - Colin Barker, Mar 31 2015
a(n) is representable as a sum of two but no fewer consecutive nonnegative integers, e.g., 1 = 0 + 1, 3 = 1 + 2, 5 = 2 + 3, etc. (see A138591). - Martin Renner, Mar 14 2016
Unique solution a( ) of the complementary equation a(n) = a(n-1)^2 - a(n-2)*b(n-1), where a(0) = 1, a(1) = 3, and a( ) and b( ) are increasing complementary sequences. - Clark Kimberling, Nov 21 2017
Also the number of maximal and maximum cliques in the n-centipede graph. - Eric W. Weisstein, Dec 01 2017
Lexicographically earliest sequence of distinct positive integers such that the average of any number of consecutive terms is always an integer. (For opposite property see A042963.) - Ivan Neretin, Dec 21 2017
Maximum number of non-intersecting line segments between vertices of a convex (n+2)-gon. - Christoph B. Kassir, Oct 21 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 123, 132, and 231. - Lara Pudwell, Apr 10 2023

Examples

			G.f. = q + 3*q^3 + 5*q^5 + 7*q^7 + 9*q^9 + 11*q^11 + 13*q^13 + 15*q^15 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
  • T. Dantzig, The Language of Science, 4th Edition (1954) page 276.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
  • D. Hök, Parvisa mönster i permutationer [Swedish], (2007).
  • E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, pp. 203-205.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A001651 (n=1 or 2 mod 3), A047209 (n=1 or 4 mod 5).
Cf. A003558, A216371, A179480 (relating to the Coach theorem).
Cf. A000754 (boustrophedon transform).

Programs

Formula

a(n) = 2*n + 1. a(-1 - n) = -a(n). a(n+1) = a(n) + 2.
G.f.: (1 + x) / (1 - x)^2.
E.g.f.: (1 + 2*x) * exp(x).
G.f. with interpolated zeros: (x^3+x)/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*(exp(x)+exp(-x))/2. - Geoffrey Critzer, Aug 25 2012
a(n) = L(n,-2)*(-1)^n, where L is defined as in A108299. - Reinhard Zumkeller, Jun 01 2005
Euler transform of length 2 sequence [3, -1]. - Michael Somos, Mar 30 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 2*u) * (1 - 2*u + 16*v) - (u - 4*v)^2 * (1 + 2*u + 2*u^2). - Michael Somos, Mar 30 2007
a(n) = b(2*n + 1) where b(n) = n if n is odd is multiplicative. [This seems to say that A000027 is multiplicative? - R. J. Mathar, Sep 23 2011]
From Hieronymus Fischer, May 25 2007: (Start)
a(n) = (n+1)^2 - n^2.
G.f. g(x) = Sum_{k>=0} x^floor(sqrt(k)) = Sum_{k>=0} x^A000196(k). (End)
a(0) = 1, a(1) = 3, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = A000330(A016777(n))/A000217(A016777(n)). - Pierre CAMI, Sep 27 2008
a(n) = A034856(n+1) - A000217(n) = A005843(n) + A000124(n) - A000217(n) = A005843(n) + 1. - Jaroslav Krizek, Sep 05 2009
a(n) = (n - 1) + n (sum of two sequential integers). - Dominick Cancilla, Aug 09 2010
a(n) = 4*A000217(n)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. - Bruno Berselli, Nov 17 2010
n*a(2n+1)^2+1 = (n+1)*a(2n)^2; e.g., 3*15^2+1 = 4*13^2. - Charlie Marion, Dec 31 2010
arctanh(x) = Sum_{n>=0} x^(2n+1)/a(n). - R. J. Mathar, Sep 23 2011
a(n) = det(f(i-j+1))A113311(n);%20for%20n%20%3C%200%20we%20have%20f(n)=0.%20-%20_Mircea%20Merca">{1<=i,j<=n}, where f(n) = A113311(n); for n < 0 we have f(n)=0. - _Mircea Merca, Jun 23 2012
G.f.: Q(0), where Q(k) = 1 + 2*(k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
a(n) = floor(sqrt(2*A000384(n+1))). - Ivan N. Ianakiev, Jun 17 2013
a(n) = 3*A000330(n)/A000217(n), n > 0. - Ivan N. Ianakiev, Jul 12 2013
a(n) = Product_{k=1..2*n} 2*sin(Pi*k/(2*n+1)) = Product_{k=1..n} (2*sin(Pi*k/(2*n+1)))^2, n >= 0 (undefined product = 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
Noting that as n -> infinity, sqrt(n^2 + n) -> n + 1/2, let f(n) = n + 1/2 - sqrt(n^2 + n). Then for n > 0, a(n) = round(1/f(n))/4. - Richard R. Forberg, Feb 16 2014
a(n) = Sum_{k=0..n+1} binomial(2*n+1,2*k)*4^(k)*bernoulli(2*k). - Vladimir Kruchinin, Feb 24 2015
a(n) = Sum_{k=0..n} binomial(6*n+3, 6*k)*Bernoulli(6*k). - Michel Marcus, Jan 11 2016
a(n) = A000225(n+1) - A005803(n+1). - Miquel Cerda, Nov 25 2016
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
Sum_{n>=0} 1/a(n)^2 = Pi^2/8 = A111003. - Bernard Schott, Dec 10 2020
Sum_{n >= 1} (-1)^n/(a(n)*a(n+1)) = Pi/4 - 1/2 = 1/(3 + (1*3)/(4 + (3*5)/(4 + ... + (4*n^2 - 1)/(4 + ... )))). Cf. A016754. - Peter Bala, Mar 28 2024
a(n) = A055112(n)/oblong(n) = A193218(n+1)/Hex number(n). Compare to the Sep 27 2008 comment by Pierre CAMI. - Klaus Purath, Apr 23 2024
a(k*m) = k*a(m) - (k-1). - Ya-Ping Lu, Jun 25 2024
a(n) = A000217(a(n))/n for n > 0. - Stefano Spezia, Feb 15 2025

Extensions

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010
Peripheral comments deleted by N. J. A. Sloane, May 09 2022

A058331 a(n) = 2*n^2 + 1.

Original entry on oeis.org

1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579, 649, 723, 801, 883, 969, 1059, 1153, 1251, 1353, 1459, 1569, 1683, 1801, 1923, 2049, 2179, 2313, 2451, 2593, 2739, 2889, 3043, 3201, 3363, 3529, 3699, 3873, 4051
Offset: 0

Views

Author

Erich Friedman, Dec 12 2000

Keywords

Comments

Maximal number of regions in the plane that can be formed with n hyperbolas.
Also the number of different 2 X 2 determinants with integer entries from 0 to n.
Number of lattice points in an n-dimensional ball of radius sqrt(2). - David W. Wilson, May 03 2001
Equals A112295(unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Oct 07 2007
Binomial transform of A166926. - Gary W. Adamson, May 03 2008
a(n) = longest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (2n^2 + 1, 2n^2 + 2, 4n^2 + 1).
{a(k): 0 <= k < 3} = divisors of 9. - Reinhard Zumkeller, Jun 17 2009
Number of ways to partition a 3*n X 2 grid into 3 connected equal-area regions. - R. H. Hardin, Oct 31 2009
Let A be the Hessenberg matrix of order n defined by: A[1, j] = 1, A[i, i] := 2, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 3, a(n - 1) = coeff(charpoly(A, x), x^(n - 2)). - Milan Janjic, Jan 26 2010
Except for the first term of [A002522] and [A058331] if X = [A058331], Y = [A087113], A = [A002522], we have, for all other terms, Pell's equation: [A058331]^2 - [A002522]*[A087113]^2 = 1; (X^2 - A*Y^2 = 1); e.g., 3^2 -2*2^2 = 1; 9^2 - 5*4^2 = 1; 129^2 - 65*16^2 = 1, and so on. - Vincenzo Librandi, Aug 07 2010
Niven (1961) gives this formula as an example of a formula that does not contain all odd integers, in contrast to 2n + 1 and 2n - 1. - Alonso del Arte, Dec 05 2012
Numbers m such that 2*m-2 is a square. - Vincenzo Librandi, Apr 10 2015
Number of n-tuples from the set {1,0,-1} where at most two elements are nonzero. - Michael Somos, Oct 19 2022
a(n) gives the x-value of the integral solution (x,y) of the Pellian equation x^2 - (n^2 + 1)*y^2 = 1. The y-value is given by 2*n (see Tattersall). - Stefano Spezia, Jul 23 2025

Examples

			a(1) = 3 since (0 0 / 0 0), (1 0 / 0 1) and (0 1 / 1 0) have different determinants.
G.f. = 1 + 3*x + 9*x^2 + 19*x^3 + 33*x^4 + 51*x^5 + 73*x^6 + ... - _Michael Somos_, Oct 19 2022
		

References

  • Ivan Niven, Numbers: Rational and Irrational, New York: Random House for Yale University (1961): 17.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.

Crossrefs

Cf. A000124.
Second row of array A099597.
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A112295.
Column 2 of array A188645.
Cf. A001105 and A247375. - Bruno Berselli, Sep 16 2014

Programs

  • Haskell
    a058331 = (+ 1) . a001105  -- Reinhard Zumkeller, Dec 13 2014
    
  • Magma
    [2*n^2 + 1 : n in [0..100]]; // Wesley Ivan Hurt, Feb 02 2017
  • Mathematica
    b[g_] := Length[Union[Map[Det, Flatten[ Table[{{i, j}, {k, l}}, {i, 0, g}, {j, 0, g}, {k, 0, g}, {l, 0, g}], 3]]]] Table[b[g], {g, 0, 20}]
    2*Range[0, 49]^2 + 1 (* Alonso del Arte, Dec 05 2012 *)
  • PARI
    a(n)=2*n^2+1 \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

G.f.: (1 + 3x^2)/(1 - x)^3. - Paul Barry, Apr 06 2003
a(n) = M^n * [1 1 1], leftmost term, where M = the 3 X 3 matrix [1 1 1 / 0 1 4 / 0 0 1]. a(0) = 1, a(1) = 3; a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). E.g., a(4) = 33 since M^4 *[1 1 1] = [33 17 1]. - Gary W. Adamson, Nov 11 2004
a(n) = cosh(2*arccosh(n)). - Artur Jasinski, Feb 10 2010
a(n) = 4*n + a(n-1) - 2 for n > 0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(n) = (((n-1)^2 + n^2))/2 + (n^2 + (n+1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = A251599(3*n) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = sqrt(8*(A000217(n-1)^2 + A000217(n)^2) + 1). - J. M. Bergot, Sep 03 2015
E.g.f.: (2*x^2 + 2*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A002378(n) + A002061(n). - Bruce J. Nicholson, Aug 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(2))*coth(Pi/sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(2))*csch(Pi/sqrt(2)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(2))*sinh(Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(2))*csch(Pi/sqrt(2)). (End)
From Leo Tavares, May 23 2022: (Start)
a(n) = A000384(n+1) - 3*n.
a(n) = 3*A000217(n) + A000217(n-2). (End)
a(n) = a(-n) for all n in Z and A037235(n) = Sum_{k=0..n-1} a(k). - Michael Somos, Oct 19 2022

Extensions

Revised description from Noam Katz (noamkj(AT)hotmail.com), Jan 28 2001

A082044 Main diagonal of A082043: a(n) = n^4 + 2*n^2 + 1.

Original entry on oeis.org

1, 4, 25, 100, 289, 676, 1369, 2500, 4225, 6724, 10201, 14884, 21025, 28900, 38809, 51076, 66049, 84100, 105625, 131044, 160801, 195364, 235225, 280900, 332929, 391876, 458329, 532900, 616225, 708964, 811801, 925444, 1050625, 1188100
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

a(n) = longest side b of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (n^2+2, n^4+2*n^2+1, n^4+3*n^2+1).

Examples

			G.f. = 1 + 4*x + 25*x^2 + 100*x^3 + 289*x^4 + 676*x^5 + 1369*x^6 + ...
		

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.

Programs

  • Magma
    [(n^2+1)^2: n in [0..40]]; // G. C. Greubel, Dec 24 2022
    
  • Maple
    seq(fibonacci(3,n)^2,n=0..33); # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Fibonacci[3,Range[0,40]]^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,25,100,289},40] (* Harvey P. Dale, Feb 27 2015 *)
  • PARI
    a(n) = n^4+2*n^2+1; \\ Michel Marcus, Jan 22 2016
    
  • SageMath
    [(n^2+1)^2 for n in range(41)] # G. C. Greubel, Dec 24 2022

Formula

a(n) = n^4 + 2*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Feb 27 2015
a(n) = (4*A000217(n-1)^2 + 2*A002061(n))^2 / a(n-1). - Bruce J. Nicholson, Apr 17 2017
a(n) = A002522(n)^2 = (n^2 + 1)^2 = a(-n) for all n in Z. - Michael Somos, Apr 17 2017
G.f.: (1 - x + 15*x^2 + 5*x^3 + 4*x^4) / (1 - x)^5. - Michael Somos, Apr 17 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*csch(Pi)^2/4 + Pi*coth(Pi)/4 + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*csch(Pi)*coth(Pi)/4 + Pi*csch(Pi)/4 + 1/2. (End)
E.g.f.: (1 + 3*x + 9*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 24 2022

A057721 a(n) = n^4 + 3*n^2 + 1.

Original entry on oeis.org

1, 5, 29, 109, 305, 701, 1405, 2549, 4289, 6805, 10301, 15005, 21169, 29069, 39005, 51301, 66305, 84389, 105949, 131405, 161201, 195805, 235709, 281429, 333505, 392501, 459005, 533629, 617009, 709805, 812701, 926405, 1051649
Offset: 0

Views

Author

N. J. A. Sloane, Oct 27 2000

Keywords

Comments

Longest possible side c of a triangle with integer sides a <= b < c and inradius n. Triangle has sides (n^2+2, n^4+2n^2+1, n^4+3n^2+1). Proved by Joseph Myers, Jun 11 2006.

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A120062 [triangles with integer inradius], A120063 [minimum of their longest sides].

Programs

Formula

a(n) = denominator of Integral_{x=0..infinity} sin(n*x)/exp((n^2+1)*x). - Francesco Daddi, Jul 07 2013

A208984 Areas A of the triangles such that A, the sides, the circumradius and the inradius are integers.

Original entry on oeis.org

24, 96, 120, 168, 216, 240, 336, 384, 432, 480, 600, 624, 672, 720, 768, 840, 864, 960, 1080, 1176, 1320, 1344, 1512, 1536, 1560, 1680, 1728, 1848, 1920, 1944, 2016, 2040, 2160, 2184, 2304, 2376, 2400, 2496, 2520, 2688, 2856, 2880, 2904, 3000, 3024, 3072, 3240
Offset: 1

Views

Author

Michel Lagneau, Mar 04 2012

Keywords

Comments

a(n) is divisible by 24, and the positive squares A000290(n) are included in the sequence a(n)/24 = {1, 4, 5, 7, 9, 10, 14, 16, 18, 20, 25, 26, 28, 30, 32, 35, 36, 40, 45, 49, 55, 56, 63, 64, 65, ...}.
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s and the circumradius is given by R = abc/4A.

Examples

			a(1) = 24 because, for (a,b,c) = (6, 8, 10) => s = (6 + 8 + 10)/2 = 12, and
A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24;
R = abc/4A = 480/4*24 = 5;
r = A/p = 24/12 = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..1000):k:=0:nn:=250: for a from 1
    to nn do: for b from a to nn  do: for c from b to nn  do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and irem(a*b*c,4*s) = 0 and irem(s,p)=0 then k:=k+1:T[k]:= s: else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
  • Mathematica
    nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[a*b*c/(4* Sqrt[area2])] && IntegerQ[Sqrt[area2]/s], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

A007237 Number of triangles with integer sides and area = n times perimeter.

Original entry on oeis.org

5, 18, 45, 45, 52, 139, 80, 89, 184, 145, 103, 312, 96, 225, 379, 169, 116, 498, 123, 328, 560, 280, 134, 592, 228, 271, 452, 510, 134, 1036, 144, 280, 639, 339, 597, 1119, 139, 354, 635, 648, 162, 1486, 169, 594, 1215, 354, 186, 1066, 369, 622, 706, 597, 164
Offset: 1

Views

Author

Keywords

Examples

			For n=2, the a(2)=18 solutions whose area is twice its perimeter: (13,14,15) (12,16,20) (15,15,24) (10,24,26) (11,25,30) (18,20,34) (15,26,37) (14,30,40) (10,35,39) (9,40,41) (12,50,58) (33,34,65) (25,51,74) (9,75,78) (11,90,97) (21,85,104) (19,153,170) (18,289,305).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A120062.

Programs

  • PARI
    for(k=1,100, n=0; d=4*k^2; e=3*d; for(b=1,sqrt(e), for(c=2*k,e/b, if(b*c>d && c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++))))); print1(n, ", "))
    
  • Python
    from math import sqrt, floor
    def A007237(n):
        ct = 0; k = 4*n*n
        for x in range(1, floor(2*sqrt(3)*n) + 1):
            for y in range(max(k//x + 1, x), floor((k+2*n*sqrt(k+x*x))/x)+1):
                if k*(x + y)%(x*y - k) == 0: ct += 1
        return ct  # Ya-Ping Lu, Dec 24 2023

Formula

a(n) = A120062(2n). - Ray Chandler, Jul 27 2017

Extensions

a(16)-a(50) from Les Reid, Jul 06 2010

A070201 Number of integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 8, 0, 0, 0, 1, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = #{k | A070083(k) = n and A070200(k) = exact inradius};
a(n) = A070203(n) + A070204(n);
a(n) = A070205(n) + A070206(n) + A024155(n);
a(odd) = 0.

Examples

			a(36)=2, as there are two integer triangles with integer inradius having perimeter=32:
First: [A070080(368), A070081(368), A070082(368)] = [9,10,17], for s = A070083(368)/2 = (9+10+17)/2 = 18: inradius = sqrt((s-9)*(s-10)*(s-17)/s) = sqrt(9*8*1/18) = sqrt(4) = 2; therefore A070200(368) = 2.
2nd: [A070080(370), A070081(370), A070082(370)] = [9,12,15], for s = A070083(370)/2 = (9+12+15)/2 = 18: inradius = sqrt((s-9)*(s-12)*(s-15)/s) = sqrt(9*6*3/18) = sqrt(9) = 3; therefore A070200(370) = 3.
		

Crossrefs

Programs

  • Ruby
    def A(n)
      cnt = 0
      (1..n / 3).each{|a|
        (a..(n - a) / 2).each{|b|
          c = n - a - b
          if a + b > c
            s = n / 2r
            t = (s - a) * (s - b) * (s - c) / s
            if t.denominator == 1
              t = t.to_i
              cnt += 1 if Math.sqrt(t).to_i ** 2 == t
            end
          end
        }
      }
      cnt
    end
    def A070201(n)
      (1..n).map{|i| A(i)}
    end
    p A070201(100) # Seiichi Manyama, Oct 06 2017

A331040 Numerator of squared radius of inscribed circle of a triangle with integer sides i <= j <= k, such that the number of triangles with this radius sets a new record. Denominators are A331041.

Original entry on oeis.org

1, 35, 3, 7, 3, 15, 8, 35, 55, 63, 95, 119, 135, 56, 231, 255, 80, 351, 455, 495, 855, 216, 224, 1071, 360
Offset: 1

Views

Author

Hugo Pfoertner, Jan 11 2020

Keywords

Comments

The radius rho of the inscribed circle of a triangle (a,b,c) is rho = sqrt((s-a)*(s-b)*(s-c)/s), with s=(a+b+c)/2. For given integer values of a <= b and a rational target value r2 of the squared incircle radius, c is given by the two positive real roots of the polynomial P(a,b,x,r2) = x^3 - x^2 * (a+b) + x * (4*r2-(b-a)^2) + (a+b)^3 + 4*(a+b)*(r2-a*b). P(a,b,x,r2) = 0 may have 0, 1 or 2 positive integer solutions.
The potential ranges of the side lengths of the triangles can be determined in analogy to the ranges for the case of integer radii of the incircles, see A120062 for the relevant formulas and sequences.

Examples

			b(1) = a(1)/A331041(1) = 1/12: Triangle (1,1,1) has the least possible radius of incircle = sqrt(1/12).
b(2) = a(2)/A331041(2) = 35/52: Triangles (2,18,19) and (3,4,6) are the first occurrence of more than one triangle with the same radius of their incircles. rho = sqrt(35/52) in both cases.
b(3) = a(3)/A331041(3) = 3/4: Triangles are (2,7,7), (3,3,3), and (3,5,7).
b(4) = a(4)/A331041(4) = 7/4: (3,12,12), (3,22,23), (4,5,6), (5,18,22), (6,11,16) are the A331043(4) = 5 triangles with rho^2 = b(4).
b(15) = 231/4 includes the rare case, where two distinct integer solutions for the same pair of sides a and b exist: (20,37,38) and (20,37,39), both with rho^2=231/4 and thus contributing 2 of the A331043(15)=84 triangles with this squared radius of the incircle.
		

Crossrefs

Cf. A331041 (corresponding denominators), A331042 (4*a(n)/A331041(n)), A331043 (records of numbers of triangles).

Programs

  • PARI
    \\ Only suitable for demonstration of initial terms
    rh2(a,b,c)={my(s=(a+b+c)/2);(s-a)*(s-b)*(s-c)/s};
    lim_a(x)=ceil(4*(x^2+2));
    lim_b(x)=ceil(4*(x^4+2*x^2+1));
    target=35/4; v=vector(333938); n=0;
    for(a=1,lim_a(sqrt(target)), for(b=a,lim_b(sqrt(target)), for(c=b,a+b-1, f=rh2(a,b,c);v[n++]=f)));
    v=vecsort(v); print("A331040 A331041 A331043"); print(numerator(v[1])," ",denominator(v[1])," ",1); m=0; mm=0; for(k=2,#v, if(v[k]>target,break); if(v[k]==v[k-1], m++; if(m>mm&&v[k+1]>v[k], print(numerator(v[k])," ",denominator(v[k])," ",m);mm=m),m=1));

A120572 Smallest area of any triangle with integer sides a <= b <= c and inradius n.

Original entry on oeis.org

6, 24, 48, 84, 150, 192, 294, 336, 432, 540, 726, 756, 1014, 1134, 1170, 1344, 1734, 1710, 2166, 2100, 2310, 2640, 3174, 3000, 3750, 4056, 3888, 4116, 5046, 4680, 5766, 5376, 5808, 6936, 6510, 6804, 8214, 8664, 8112, 8400, 10086, 9240, 11094, 10164
Offset: 1

Views

Author

David W. Wilson, Jun 17 2006

Keywords

Comments

a(n) == 0 (mod 6).
Empirically, 3*sqrt(3) < a(n)/n^2 <= 6. The lower bound is provably tight, the upper bound seems to be achieved infinitely often, e.g., for prime n >= 5.
From Michel Lagneau, Mar 02 2012: (Start)
Subset of A188158.
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s(s-a)(s-b)(s-c)), where s = (a+b+c)/2. The radius of the incircle or inscribed circle (also known as the inradius, r) is given by r = A/s.
From n = 17, it is possible to find couples of triangles with the property: r1 > r2 and A1 < A2 where A1, A2 are the consecutive areas corresponding to the inradius r1, r2. For example, a(17) = 1734 with (a,b,c) = (51, 68, 85) and a(18) = 1710 with (a,b,c) = (57, 65, 68).
Another interesting property of this sequence is that a(n) is divisible by 6 and, except n = 3, a(n)/6 = n^2 if n prime, hence the proposition:
Among the set of triangles whose area and sides are integers and whose inradius r is a prime number other than 3, the smallest area A is given by A = 6r^2.
Example: if r = 5, the areas of the triangles are {150, 210, 270, 330, 390, 510, ...} and the smallest area of them is A = 6*5^2 = 150 because 5 is prime.
Proof: Let r be a number such that the sides of a triangle are a = 3r, b = 4r, c = 5r. Then s = (a+b+c)/2 = 6r and A = sqrt(s(s-a)(s-b)(s-c)) = sqrt(36r^4) = 6r^2 is a possible area. Is 6r^2 the smallest area? The response is no in the general case for the composite numbers.
Writing a = (m+n)/2, b = (n+l)/2, c = (l+m)/2, and using rs = A and Heron's formula for A, we find lmn = 4r^2(l+m+n). Since m, n and l have to be of the same parity for a, b and c to be integral, they must therefore be even. Setting l = 2u, m = 2v, and n = 2w, we have a = v+w, b = w+u, c = u+v, and uvw = r^2(u+v+w). Then r^2 = uvw/(u+v+w).
First case: If r = p is prime, we prove that A = 6p^2 is the smallest area of all the triangles whose inradius is p. Suppose A' < A with inradius(A') = p. The area A is the corresponding value of the triangle (u,v,w) = (1*p, 2*p, 3*p) because 6p^3/6p = p^2. However, inradius(A') = p => u'v'w'/(u'+v'+w') = p^2 => (u',v',w') = (u,v,w) and A is the smallest area.
Second case: If r = q is composite, the triangle (u,v,w) = (1*q, 2*q, 3*q) gives an area A with inradius(A) = q, but it is possible to find A' < A with inradius(A') = q; for example, if q = 10, the triangle (u,v,w) = (30, 20, 10) whose area is A = 600 gives sqrt{(30*20*10)/(30+20+10)} = sqrt(6000/60) = 10 and the triangle(u',v',w') = (24,15,15) whose area is A' = 540 gives sqrt{(24*15*15)/(24+15+15)} = sqrt(5400/54) = 10.
(End)

Examples

			a(4) = 84 because, for (a,b,c) = (13,14,15) => A = sqrt(21(21-13)(21-14)(21-15)) = 84 and r = 84/21 = 4.
		

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.

Programs

  • Maple
    T:=array(1..500):nn:=70: for n from 1 to 16 do:k:=0:ii:=0:for a from 1
    to nn do: for b from a to nn  do: for c from b to nn  do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and s/p = n then k:=k+1:T[k]:=s: else fi:fi:od:od:od: L := [seq(T[i], i=1..k)]:A:=sort(L, `<`): w:=A[1]: printf ( "%d %d \n", n, w):od: # Michel Lagneau, Mar 02 2012

A120252 Number of primitive triangles with integer sides a<=b<=c and inradius n; primitive means gcd(a, b, c, n) = 1.

Original entry on oeis.org

1, 4, 12, 13, 14, 28, 23, 27, 38, 33, 25, 81, 30, 52, 83, 44, 32, 101, 33, 80, 149, 73, 41, 146, 50, 61, 89, 132, 35, 204, 45, 80, 173, 79, 135, 220, 37, 85, 167, 156, 43, 291, 59, 164, 234, 88, 63, 236, 92, 126, 185, 162, 46, 179, 189, 258, 230, 94, 53, 483, 43, 94
Offset: 1

Views

Author

Graeme McRae, Jun 12 2006

Keywords

Comments

A120062(n) = sum_{k:k|n} a(k)

Examples

			a(3)= 12 because there are 12 primitive triangles with integer sides and inradius r=3. They are (10,10,12), (8,15,17), (11,13,20), (7,24,25), (8,26,30), (19,20,37), (16,25,39), (15,28,41), (13,40,51), (12,55,65), (7,65,68), (11,100,109).
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Cf. A120062.
See A120062 for sequences related to integer-sided triangles with integer inradius n.

Formula

Moebius transform of A120062. - David W. Wilson, Jun 14 2006
Showing 1-10 of 26 results. Next