cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A120062 Number of triangles with integer sides a <= b <= c having integer inradius n.

Original entry on oeis.org

1, 5, 13, 18, 15, 45, 24, 45, 51, 52, 26, 139, 31, 80, 110, 89, 33, 184, 34, 145, 185, 103, 42, 312, 65, 96, 140, 225, 36, 379, 46, 169, 211, 116, 173, 498, 38, 123, 210, 328, 44, 560, 60, 280, 382, 134, 64, 592, 116, 228, 230, 271, 47, 452, 229, 510, 276, 134, 54
Offset: 1

Views

Author

Hugo Pfoertner, Jun 11 2006

Keywords

Comments

It is conjectured that the longest possible side c of a triangle with integer sides and inradius n is given by A057721(n) = n^4 + 3*n^2 + 1.
For n >= 1, a(n) >= 1 because triangle (a, b, c) = (n^2 + 2, n^4 + 2*n^2 + 1, n^4 + 3*n^2 + 1) has inradius n. - David W. Wilson, Jun 17 2006
Previous name was "Number of triangles with integer sides a<=bA362669); so, now effectively, a(10) = 52. - Bernard Schott, Apr 24 2023

Examples

			a(1)=1: {3,4,5} is the only triangle with integer sides and inradius 1.
a(2)=5: {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17} are the only triangles with integer sides and inradius 2.
a(4)=A120252(1)+A120252(2)+A120252(4)=1+4+13 because 1, 2 and 4 are the factors of 4. The 1 primitive triangle with inradius n=1 is (3,4,5). The 4 primitive triangles with n=2 are (5,12,13), (9,10,17), (7,15,20), (6,25,29). The 13 primitive triangles with n=4 are (13,14,15), (15,15,24), (11,25,30), (15,26,37), (10,35,39), (9,40,41), (33,34,65), (25,51,74), (9,75,78), (11,90,97), (21,85,104), (19,153,170), (18,289,305). (Primitive means GCD(a, b, c, n)=1.)
		

Crossrefs

Cf. A078644 [Pythagorean triangles with inradius n], A057721 [n^4+3*n^2+1].
Let S(n) be the set of triangles with integer sides a<=b<=c and inradius n. Then:
A120062(n) gives number of triangles in S(n).
A120261(n) gives number of triangles in S(n) with gcd(a, b, c) = 1.
A120252(n) gives number of triangles in S(n) with gcd(a, b, c, n) = 1.
A005408(n) = 2n+1 gives shortest short side a of triangles in S(n).
A120064(n) gives shortest middle side b of triangles in S(n).
A120063(n) gives shortest long side c of triangles in S(n).
A120570(n) gives shortest perimeter of triangles in S(n).
A120572(n) gives smallest area of triangles in S(n).
A058331(n) = 2n^2+1 gives longest short side a of triangles in S(n).
A082044(n) = n^4+2n^2+1 gives longest middle side b of triangles in S(n).
A057721(n) = n^4+3n^2+1 gives longest long side c of triangles in S(n).
A120571(n) = 2n^4+6n^2+4 gives longest perimeter of triangles in S(n).
A120573(n) = gives largest area of triangles in S(n).
Cf. A120252 [primitive triangles with integer inradius], A120063 [minimum of longest sides], A057721 [maximum of longest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A058331 [maximum of shortest sides], A007237 [number of triangles with integer sides and area = n times perimeter].

Programs

  • Mathematica
    (* See link above. *)

Formula

The even-numbered terms are given by a(2*n)=A007237(n).
a(n) = Sum_{k|n} A120252(k).

Extensions

More terms from Graeme McRae and Hugo Pfoertner, Jun 12 2006
Name corrected by Bernard Schott, Apr 24 2023

A114949 a(n) = n^2 + 6.

Original entry on oeis.org

6, 7, 10, 15, 22, 31, 42, 55, 70, 87, 106, 127, 150, 175, 202, 231, 262, 295, 330, 367, 406, 447, 490, 535, 582, 631, 682, 735, 790, 847, 906, 967, 1030, 1095, 1162, 1231, 1302, 1375, 1450, 1527, 1606, 1687, 1770, 1855, 1942, 2031, 2122, 2215, 2310, 2407, 2506
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

2/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 2r/3, r2 = r - r1 = r/3. See the MathWorld link for such a Pappus chain. The clockwise chain companion has circle radii R'(n)/r = 2/A222465(n), n >= 0. - Wolfdieter Lang, Mar 01 2013

Examples

			The arbelos chain defined in a comment above has circle radii [1/3, 2/7, 1/5, 2/15, 1/11, 2/31, 1/21, 2/55, 1/35, 2/87, 1/53,...], for n >= 0. - _Wolfdieter Lang_, Mar 01 2013
		

Crossrefs

Programs

Formula

From R. J. Mathar, May 17 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(6 - 11*x + 7*x^2)/(x - 1)^3. (End)
a(n) = 2*n + a(n - 1) - 1, with n > 0, a(0)=6. - Vincenzo Librandi, Nov 13 2010
a(n) = A000290(n) + 6. - Omar E. Pol, Mar 02 2013
a(n) = ((n-2)^3 + (n-1)^3 + n^3 + (n+1)^3 + (n+2)^3)/(5*n) for n>=1. - Bruno Berselli, May 12 2014
For n >= 1, a(n) = (A016742(n) + A082044(n) - 1)/A000290(n). - Bruce J. Nicholson, Apr 19 2017
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/12. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(5/6)*sinh(sqrt(5)*Pi)/sinh(sqrt(6)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(7/6)*sinh(sqrt(7)*Pi)/sinh(sqrt(6)*Pi). (End)
E.g.f.: exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

A221573 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1.

Original entry on oeis.org

0, 0, 2, 0, 5, 2, 0, 10, 9, 4, 0, 17, 26, 25, 6, 0, 26, 59, 100, 57, 10, 0, 37, 114, 289, 342, 141, 16, 0, 50, 197, 676, 1293, 1210, 345, 26, 0, 65, 314, 1369, 3734, 5913, 4240, 853, 42, 0, 82, 471, 2500, 8991, 20944, 26911, 14898, 2097, 68, 0, 101, 674, 4225, 19014
Offset: 1

Views

Author

R. H. Hardin Jan 20 2013

Keywords

Comments

Table starts
...0.....0.......0........0.........0..........0...........0............0
...2.....5......10.......17........26.........37..........50...........65
...2.....9......26.......59.......114........197.........314..........471
...4....25.....100......289.......676.......1369........2500.........4225
...6....57.....342.....1293......3734.......8991.......19014........36497
..10...141....1210.....5913.....20944......59705......145800.......317233
..16...345....4240....26911....117104.....395641.....1116400......2754635
..26...853...14898...122621....655198....2622817.....8550512.....23923281
..42..2097...52306...558547...3665306...17385993....65485386....207761745
..68..5149..183684..2544357..20505052..115249117...501533796...1804315029
.110.12633..645006.11590169.114711980..763966685..3841097940..15669633131
.178.31013.2264978.52796369.641737294.5064207645.29417832750.136083460405

Examples

			Some solutions for n=6 k=4
..2....2....3....1....0....0....2....1....2....2....3....1....4....3....1....4
..0....0....0....1....4....0....2....3....0....4....0....3....4....3....3....4
..1....1....4....3....4....2....0....4....0....0....4....2....3....0....1....2
..3....1....2....1....3....3....2....4....0....3....3....2....1....3....0....0
..3....4....1....1....0....0....0....3....1....2....1....4....0....3....3....0
..0....1....4....1....3....0....4....0....3....4....3....4....2....3....0....0
		

Crossrefs

Column 1 is A006355
Row 2 is A002522
Row 4 is A082044

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-4)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6
k=5: a(n) = 5*a(n-1) +3*a(n-2) +9*a(n-4) +6*a(n-5) +3*a(n-6)
k=6: a(n) = 7*a(n-1) -4*a(n-2) +6*a(n-3) +26*a(n-4) +10*a(n-5) +16*a(n-6) +12*a(n-8)
k=7: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8)
Empirical for row n:
n=2: a(n) = 1*n^2 + 1
n=3: a(n) = 1*n^3 - 1*n^2 + 3*n - 1
n=4: a(n) = 1*n^4 + 2*n^2 + 1
n=5: a(n) = 1*n^5 + 1*n^4 - 2*n^3 + 12*n^2 - 15*n + 9 for n>2
n=6: a(n) = 1*n^6 + 2*n^5 - 5*n^4 + 24*n^3 - 41*n^2 + 50*n - 31 for n>3
n=7: a(n) = 1*n^7 + 3*n^6 - 7*n^5 + 29*n^4 - 41*n^3 + 45*n^2 - 33*n + 19 for n>2

A082043 Square array, A(n, k) = (k*n)^2 + 2*k*n + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 25, 16, 1, 1, 25, 49, 49, 25, 1, 1, 36, 81, 100, 81, 36, 1, 1, 49, 121, 169, 169, 121, 49, 1, 1, 64, 169, 256, 289, 256, 169, 64, 1, 1, 81, 225, 361, 441, 441, 361, 225, 81, 1, 1, 100, 289, 484, 625, 676, 625, 484, 289, 100, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Examples

			Array, A(n, k), begins as:
  1,   1,   1,    1,    1,    1,    1,    1,     1, ... A000012;
  1,   4,   9,   16,   25,   36,   49,   64,    81, ... A000290;
  1,   9,  25,   49,   81,  121,  169,  225,   289, ... A016754;
  1,  16,  49,  100,  169,  256,  361,  484,   625, ... A016778;
  1,  25,  81,  169,  289,  441,  625,  841,  1089, ... A016814;
  1,  36, 121,  256,  441,  676,  961, 1296,  1681, ... A016862;
  1,  49, 169,  361,  625,  961, 1369, 1849,  2401, ... A016922;
  1,  64, 225,  484,  841, 1296, 1849, 2500,  3249, ... A016994;
  1,  81, 289,  625, 1089, 1681, 2401, 3249,  4225, ... A017078;
  1, 100, 361,  784, 1369, 2116, 3025, 4096,  5329, ... A017174;
  1, 121, 441,  961, 1681, 2601, 3721, 5041,  6561, ... A017282;
  1, 144, 529, 1156, 2025, 3136, 4489, 6084,  7921, ... A017402;
  1, 169, 625, 1369, 2401, 3721, 5329, 7225,  9409, ... A017534;
  1, 196, 729, 1600, 2809, 4356, 6241, 8464, 11025, ... ;
Antidiagonals, T(n, k), begin as:
  1;
  1,   1;
  1,   4,   1;
  1,   9,   9,   1;
  1,  16,  25,  16,   1;
  1,  25,  49,  49,  25,   1;
  1,  36,  81, 100,  81,  36,   1;
  1,  49, 121, 169, 169, 121,  49,   1;
  1,  64, 169, 256, 289, 256, 169,  64,   1;
  1,  81, 225, 361, 441, 441, 361, 225,  81,   1;
  1, 100, 289, 484, 625, 676, 625, 484, 289, 100,  1;
		

Crossrefs

Diagonals include A000583, A058031, A062938, A082044 (main diagonal).
Diagonal sums (row sums if viewed as number triangle) are A082045.

Programs

  • Magma
    A082043:= func< n,k | (k*(n-k))^2 +2*k*(n-k) +1 >;
    [A082043(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 24 2022
    
  • Mathematica
    T[n_, k_]:= (k*(n-k))^2 +2*k*(n-k) +1;
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 24 2022 *)
  • SageMath
    def A082043(n,k): return (k*(n-k))^2 +2*k*(n-k) +1
    flatten([[A082043(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Dec 24 2022

Formula

A(n, k) = (k*n)^2 + 2*k*n + 1 (square array).
T(n, k) = (k*(n-k))^2 + 2*k*(n-k) + 1 (number triangle).
A(k, n) = A(n, k).
T(n, n-k) = T(n, k).
A(n, n) = T(2*n, n) = A082044(n).
A(n, n-1) = T(2*n+1, n-1) = A058031(n), n >= 1.
A(n, n-2) = T(2*(n-1), n) = A000583(n-1), n >= 2.
A(n, n-3) = T(2*n-3, n) = A062938(n-3), n >= 3.
Sum_{k=0..n} T(n, k) = A082045(n) (diagonal sums).
Sum_{k=0..n} (-1)^k * T(n, k) = (1/4)*(1+(-1)^n)*(2 - 3*n). - G. C. Greubel, Dec 24 2022

A331040 Numerator of squared radius of inscribed circle of a triangle with integer sides i <= j <= k, such that the number of triangles with this radius sets a new record. Denominators are A331041.

Original entry on oeis.org

1, 35, 3, 7, 3, 15, 8, 35, 55, 63, 95, 119, 135, 56, 231, 255, 80, 351, 455, 495, 855, 216, 224, 1071, 360
Offset: 1

Views

Author

Hugo Pfoertner, Jan 11 2020

Keywords

Comments

The radius rho of the inscribed circle of a triangle (a,b,c) is rho = sqrt((s-a)*(s-b)*(s-c)/s), with s=(a+b+c)/2. For given integer values of a <= b and a rational target value r2 of the squared incircle radius, c is given by the two positive real roots of the polynomial P(a,b,x,r2) = x^3 - x^2 * (a+b) + x * (4*r2-(b-a)^2) + (a+b)^3 + 4*(a+b)*(r2-a*b). P(a,b,x,r2) = 0 may have 0, 1 or 2 positive integer solutions.
The potential ranges of the side lengths of the triangles can be determined in analogy to the ranges for the case of integer radii of the incircles, see A120062 for the relevant formulas and sequences.

Examples

			b(1) = a(1)/A331041(1) = 1/12: Triangle (1,1,1) has the least possible radius of incircle = sqrt(1/12).
b(2) = a(2)/A331041(2) = 35/52: Triangles (2,18,19) and (3,4,6) are the first occurrence of more than one triangle with the same radius of their incircles. rho = sqrt(35/52) in both cases.
b(3) = a(3)/A331041(3) = 3/4: Triangles are (2,7,7), (3,3,3), and (3,5,7).
b(4) = a(4)/A331041(4) = 7/4: (3,12,12), (3,22,23), (4,5,6), (5,18,22), (6,11,16) are the A331043(4) = 5 triangles with rho^2 = b(4).
b(15) = 231/4 includes the rare case, where two distinct integer solutions for the same pair of sides a and b exist: (20,37,38) and (20,37,39), both with rho^2=231/4 and thus contributing 2 of the A331043(15)=84 triangles with this squared radius of the incircle.
		

Crossrefs

Cf. A331041 (corresponding denominators), A331042 (4*a(n)/A331041(n)), A331043 (records of numbers of triangles).

Programs

  • PARI
    \\ Only suitable for demonstration of initial terms
    rh2(a,b,c)={my(s=(a+b+c)/2);(s-a)*(s-b)*(s-c)/s};
    lim_a(x)=ceil(4*(x^2+2));
    lim_b(x)=ceil(4*(x^4+2*x^2+1));
    target=35/4; v=vector(333938); n=0;
    for(a=1,lim_a(sqrt(target)), for(b=a,lim_b(sqrt(target)), for(c=b,a+b-1, f=rh2(a,b,c);v[n++]=f)));
    v=vecsort(v); print("A331040 A331041 A331043"); print(numerator(v[1])," ",denominator(v[1])," ",1); m=0; mm=0; for(k=2,#v, if(v[k]>target,break); if(v[k]==v[k-1], m++; if(m>mm&&v[k+1]>v[k], print(numerator(v[k])," ",denominator(v[k])," ",m);mm=m),m=1));

A082106 Main diagonal of number array A082105.

Original entry on oeis.org

1, 6, 33, 118, 321, 726, 1441, 2598, 4353, 6886, 10401, 15126, 21313, 29238, 39201, 51526, 66561, 84678, 106273, 131766, 161601, 196246, 236193, 281958, 334081, 393126, 459681, 534358, 617793, 710646, 813601, 927366, 1052673, 1190278, 1340961, 1505526, 1684801
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

4*a(n) can be written as (n^2 + 2*n + 1)^2 + (n^2 - 2*n + 1)^2 + (n^2 - 2*n - 1)^2 + (n^2 + 2*n - 1)^2. - Bruno Berselli, Jun 20 2014

Crossrefs

Programs

  • Magma
    [(n^2+2)^2 -3: n in [0..40]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    Table[n^4+4n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,6,33,118,321},40] (* Harvey P. Dale, Dec 06 2012 *)
  • SageMath
    [(n^2+2)^2 -3 for n in range(41)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = n^4 + 4*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Dec 06 2012
G.f.: (1 + x + 13*x^2 + 3*x^3 + 6*x^4)/(1 - x)^5. - Bruno Berselli, Jun 20 2014
E.g.f.: (1 + 5*x + 11*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 22 2022
Sum_{n>=0} 1/a(n) = 1/2 + (Pi/4)*((1/sqrt(2)+1/sqrt(6))*coth(sqrt(2-sqrt(3))*Pi) - (1/sqrt(2)-1/sqrt(6))*coth(sqrt(2+sqrt(3))*Pi)). - Amiram Eldar, Jan 08 2023

A120063 Shortest side c of all integer-sided triangles with sides a<=b<=c and inradius n.

Original entry on oeis.org

5, 10, 12, 15, 25, 24, 35, 30, 36, 39, 55, 45, 65, 63, 53, 60, 85, 68, 95, 75, 77, 88, 115, 85, 125, 130, 108, 105, 145, 106, 155, 120, 132, 170, 137, 135, 185, 190, 156, 150, 205, 154, 215, 165, 159, 230, 235, 170, 245, 195, 204, 195, 265, 204, 200, 195, 228, 290
Offset: 1

Views

Author

Hugo Pfoertner, Jun 13 2006

Keywords

Comments

Terms a(11),..., a(100) computed by Thomas Mautsch (mautsch(AT)ethz.ch).
Empirically, 2*sqrt(3) < a(n)/n <= 5. The lower bound is provably tight, the upper bound seems to be achieved infinitely often, e.g, for prime n >= 5. It appears that a(p) = 5p for prime p != 3. - David W. Wilson, Jun 17 2006
Minimum of longest side occurring among all A120062(n) triangles having integer sides with integer inradius n.

Examples

			a(1)=5 because the only triangle with integer sides and inradius 1 is {3,4,5}; its longest side is 5.
a(2)=10: The triangles with inradius 2 are {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17}. The minimum of their longest sides is min(13,10,29,20,17)=10.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A120062 [triangles with integer inradius], A120252 [primitive triangles with integer inradius], A057721 [maximum of longest sides], A058331 [maximum of shortest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A007237.

A120064 Shortest side b of all integer-sided triangles with sides a<=b<=c and inradius n.

Original entry on oeis.org

4, 8, 10, 14, 20, 20, 28, 28, 30, 39, 44, 40, 52, 56, 50, 56, 68, 60, 76, 70, 70, 87, 92, 80, 100, 100, 90, 97, 116, 100, 124, 112, 110, 136, 120, 120, 148, 152, 130, 140, 164, 140, 172, 154, 150, 184, 188, 160, 196, 174, 170, 182, 212, 180, 196, 189, 190, 232, 236
Offset: 1

Views

Author

Hugo Pfoertner, Jun 13 2006

Keywords

Comments

Terms a(11),..., a(100) computed by Thomas Mautsch (mautsch(AT)ethz.ch).

Examples

			a(1)=2 because the only triangle with integer sides a<=b<c and inradius 1 is {3,4,5}; its middle side is 4.
a(2)=8: The triangles with inradius 2 are {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17}. The minimum of their middle sides is min(12,8,25,15,10)=8.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Cf. A120062 [triangles with integer inradius], A120252 [primitive triangles with integer inradius], A057721 [maximum of longest sides], A120063 [minimum of longest sides], A058331 [maximum of shortest sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A007237.
See A120062 for sequences related to integer-sided triangles with integer inradius n.

A244730 a(n) = 2*n^4.

Original entry on oeis.org

0, 2, 32, 162, 512, 1250, 2592, 4802, 8192, 13122, 20000, 29282, 41472, 57122, 76832, 101250, 131072, 167042, 209952, 260642, 320000, 388962, 468512, 559682, 663552, 781250, 913952, 1062882, 1229312, 1414562, 1620000, 1847042, 2097152, 2371842, 2672672
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Programs

  • Magma
    [2*n^4: n in [0..40]];
    
  • Magma
    I:=[0,2,32,162, 512]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
  • Mathematica
    Table[2 n^4, {n, 0, 40}] (* or *) CoefficientList[Series[2(x + 11 x^2 + 11 x^3 + x^4)/(1 - x)^5, {x, 0, 40}], x]
    LinearRecurrence[{5,-10,10,-5,1},{0,2,32,162,512},40] (* Harvey P. Dale, Jun 17 2022 *)

Formula

G.f.: 2*(x + 11*x^2 + 11*x^3 + x^4)/(1 - x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) = (A082044(n) + A099761(n+1)-2)/2. - Bruce J. Nicholson, Jun 12 2017

A082113 a(n) = n^4 + 5*n^2 + 1.

Original entry on oeis.org

1, 7, 37, 127, 337, 751, 1477, 2647, 4417, 6967, 10501, 15247, 21457, 29407, 39397, 51751, 66817, 84967, 106597, 132127, 162001, 196687, 236677, 282487, 334657, 393751, 460357, 535087, 618577, 711487, 814501, 928327, 1053697, 1191367
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

Main diagonal of number array A082110.

Crossrefs

Programs

  • Magma
    [n^4+5*n^2+1: n in [0..40]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    Table[n^4+5n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,37,127,337},40] (* Harvey P. Dale, May 16 2019 *)
  • SageMath
    [n^4+5*n^2+1 for n in range(41)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = n^4 + 5*n^2 + 1.
G.f.: (1+2*x+12*x^2+2*x^3+7*x^4) / (1-x)^5. - R. J. Mathar, Dec 03 2014
E.g.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 22 2022
Showing 1-10 of 14 results. Next