cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082105 Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 13, 13, 1, 1, 22, 33, 22, 1, 1, 33, 61, 61, 33, 1, 1, 46, 97, 118, 97, 46, 1, 1, 61, 141, 193, 193, 141, 61, 1, 1, 78, 193, 286, 321, 286, 193, 78, 1, 1, 97, 253, 397, 481, 481, 397, 253, 97, 1, 1, 118, 321, 526, 673, 726, 673, 526, 321, 118, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Examples

			Array, A(n, k), begins as:
  1,  1,   1,   1,   1,   1, ... A000012;
  1,  6,  13,  22,  33,  46, ... A028872;
  1, 13,  33,  61,  97, 141, ... A082109;
  1, 22,  61, 118, 193, 286, ... ;
  1, 33,  97, 193, 321, 481, ... ;
  1, 46, 141, 286, 481, 726, ... ;
Triangle, T(n, k), begins as:
  1;
  1,  1;
  1,  6,   1;
  1, 13,  13,   1;
  1, 22,  33,  22,   1;
  1, 33,  61,  61,  33,   1;
  1, 46,  97, 118,  97,  46,   1;
  1, 61, 141, 193, 193, 141,  61,  1;
  1, 78, 193, 286, 321, 286, 193, 78,  1;
		

Crossrefs

Programs

  • Magma
    [(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1;
    Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    def A082105(n,k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1
    flatten([[A082105(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022

Formula

A(n, k) = (k*n)^2 + 4*(k*n) + 1 (square array).
A(n, n) = T(2*n, n) = A082106(n) (main diagonal).
T(n, k) = A(n-k, k) (number triangle).
Sum_{k=0..n} T(n, k) = A082107(n) (diagonal sums).
T(n, n-1) = A028872(n-1), n >= 1.
T(n, n-2) = A082109(n-2), n >= 2.
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k * T(n, k) = ((1+(-1)^n)/2)*A016897(n-1).
T(2*n+1, n+1) = A047673(n+1), n >= 0.
T(n, n-k) = T(n, k). (End)

A082107 Diagonal sums of number array A082105.

Original entry on oeis.org

1, 2, 8, 28, 79, 190, 406, 792, 1437, 2458, 4004, 6260, 9451, 13846, 19762, 27568, 37689, 50610, 66880, 87116, 112007, 142318, 178894, 222664, 274645, 335946, 407772, 491428, 588323, 699974, 828010, 974176, 1140337, 1328482, 1540728
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n^5+20*n^3+9*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {1,2,8,28,79,190}, 51] (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    [(n^5+20*n^3+9*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = (n^5 + 20*n^3 + 9*n + 30)/30.
G.f.: (1-4*x+11*x^2-10*x^3+6*x^4)/(1-x)^6 . - R. J. Mathar, Mar 27 2019
E.g.f.: (1/30)*(30 +30*x +75*x^2 +45*x^3 +10*x^4 +x^5)*exp(x). - G. C. Greubel, Dec 22 2022

A082113 a(n) = n^4 + 5*n^2 + 1.

Original entry on oeis.org

1, 7, 37, 127, 337, 751, 1477, 2647, 4417, 6967, 10501, 15247, 21457, 29407, 39397, 51751, 66817, 84967, 106597, 132127, 162001, 196687, 236677, 282487, 334657, 393751, 460357, 535087, 618577, 711487, 814501, 928327, 1053697, 1191367
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

Main diagonal of number array A082110.

Crossrefs

Programs

  • Magma
    [n^4+5*n^2+1: n in [0..40]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    Table[n^4+5n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,37,127,337},40] (* Harvey P. Dale, May 16 2019 *)
  • SageMath
    [n^4+5*n^2+1 for n in range(41)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = n^4 + 5*n^2 + 1.
G.f.: (1+2*x+12*x^2+2*x^3+7*x^4) / (1-x)^5. - R. J. Mathar, Dec 03 2014
E.g.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 22 2022
Showing 1-3 of 3 results.