cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A024155 Number of integer-sided triangles with sides a,b,c, a

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Also number of right integer triangles with perimeter n having integral inradius. - Reinhard Zumkeller, May 05 2002
Every integer-sided right triangle has integer inradius. If the triple is [p^2-q^2,2pq,p^2+q^2] then inradius = pq-q^2. - Michael Somos, Sep 13 2005

Crossrefs

Formula

a(n) = A070201(n) - A070205(n) - A070206(n).

A070204 Number of isosceles integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070201(n) - A070203(n).

Crossrefs

A070209 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer inradius.

Original entry on oeis.org

17, 116, 212, 269, 368, 370, 493, 561, 587, 659, 850, 1204, 1297, 1582, 1599, 1629, 1920, 1988, 2115, 2352, 2555, 2574, 2774, 2778, 3251, 3473, 3746, 3751, 4286, 4298, 4307, 4313, 4319, 4330, 4370, 4406, 5008, 5251
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], for s = A070083(212)/2 = (5+12+13)/2 = 15: inradius = sqrt((s-5)*(s-12)*(s-13)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; therefore A070200(212)=2. [Corrected by _Rick L. Shepherd_, May 15 2008]
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A336757 Number of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression with a perimeter = n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 5, 0, 0, 2, 0, 0, 6, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 8, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 5, 0, 0, 11, 0, 0, 4
Offset: 1

Views

Author

Bernard Schott, Sep 20 2020

Keywords

Comments

Equivalently: number of primitive integer-sided triangles such that b = (a+c)/2 with a < c and perimeter = n.
As the perimeter of these triangles = 3*b where b is the middle side, a(n) >= 1 iff n = 3*b, with b >= 3.
When b is prime, all the triangles of perimeter n = 3*b are primitive, hence in this case: a(n) = A024164(n).
For the corresponding triples (primitive or not), miscellaneous properties and references, see A336750.

Examples

			a(9) = 1 for the smallest such triangle (2, 3, 4).
a(12) = 1 for the Pythagorean triple (3, 4, 5).
a(15) = 2 for the two triples (3, 5, 7) and (4, 5, 6).
a(18) = 1 for the triple (5, 6, 7); the other triple (4, 6, 8) corresponding to a perimeter = 18 is not a primitive triple.
		

Crossrefs

Cf. A336750 (triples, primitive or not), A336755 (primitive triples), A336756 (perimeters of primitive triangles).
Cf. A024164 (number of such triangles, primitive or not).
Similar sequences: A005044 (integer-sided triangles), A024155 (right triangles), A070201 (with integral inradius).

Formula

For n = 3*b, b >= 3, a(n) = A023022(b) = A000010(b)/2, otherwise a(n) = 0.

A070203 Number of scalene integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 8, 0, 0, 0, 1, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070201(n) - A070204(n).

Crossrefs

Programs

  • Ruby
    def A(n)
      cnt = 0
      (1..n / 3).each{|a|
        (a + 1..(n - a) / 2).each{|b|
          c = n - a - b
          if a + b > c && b < c
            s = n / 2r
            t = (s - a) * (s - b) * (s - c) / s
            if t.denominator == 1
              t = t.to_i
              cnt += 1 if Math.sqrt(t).to_i ** 2 == t
            end
          end
        }
      }
      cnt
    end
    def A070203(n)
      (1..n).map{|i| A(i)}
    end
    p A070203(100) # Seiichi Manyama, Oct 07 2017

A070205 Number of acute integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Formula

a(n) = A070201(n) - A024155(n) - A070206(n).

A070206 Number of obtuse integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070201(n) - A024155(n) - A070205(n).

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A070210 Inradii of integer triangles [A070080(A070209(n)), A070081(A070209(n)), A070082(A070209(n))].

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 2, 4, 3, 4, 4, 3, 2, 4, 5, 3, 6, 4, 6, 6, 6, 4, 6, 3, 4, 3, 6, 4, 5, 4, 3, 6, 5, 7, 8, 6, 4, 6, 8, 7, 8, 9, 3, 9, 5, 6, 9, 8, 10, 6, 6, 6, 9, 8, 4, 8, 9, 7, 10, 6, 10, 12, 6, 12, 12, 5, 3, 7, 8, 10, 4, 9, 10, 11, 6, 12, 3, 6, 9, 12, 12, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070200(A070209(n)).

Examples

			A070209(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], let s = A070083(212)/2 = (5+12+13)/2 = 15 then inradius = sqrt((s-5)*(s-5)*(s-6)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; a(3) = A070200(212) = 2.
		

Crossrefs

A070208 Number of integer triangles with perimeter n having integral area but not integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A070201(n).

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

A338393 Smallest perimeter of integer-sided triangles for which there exist exactly n triangles that have an integer inradius.

Original entry on oeis.org

12, 36, 60, 162, 108, 180, 228, 84, 132, 168, 210, 640, 252, 448, 504, 612, 462, 480, 396, 1050, 1008, 630, 672, 1632, 756, 792, 1380, 420, 1740, 1232, 1584, 1560, 1188, 1540, 2052, 1428, 1820, 840, 1620, 1320, 1890, 3612, 2912, 2280, 1092, 924, 2340, 2730, 3220
Offset: 1

Views

Author

Bernard Schott, Oct 28 2020

Keywords

Examples

			a(1) = 12 because (3,4,5) is the smallest integer-sided triangle with an integer inradius and this integer radius = 1.
a(2) = 36 and the 2 corresponding triangles are (9,10,17) with r=2 and (9,12,15) with r=3.
a(3) = 60 and the 3 corresponding triangles are (6,25,29) with r=2, (10,24,26) with r=4 and (15,20,25) with r=5.
		

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 28 2020
Showing 1-10 of 10 results.