cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A005044 Alcuin's sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of triangles with integer sides and perimeter n.
Also a(n) is the number of triangles with distinct integer sides and perimeter n+6, i.e., number of triples (a, b, c) such that 1 < a < b < c < a+b, a+b+c = n+6. - Roger Cuculière
With a different offset (i.e., without the three leading zeros, as in A266755), the number of ways in which n empty casks, n casks half-full of wine and n full casks can be distributed to 3 persons in such a way that each one gets the same number of casks and the same amount of wine [Alcuin]. E.g., for n=2 one can give 2 people one full and one empty and the 3rd gets two half-full. (Comment corrected by Franklin T. Adams-Watters, Oct 23 2006)
For m >= 2, the sequence {a(n) mod m} is periodic with period 12*m. - Martin J. Erickson (erickson(AT)truman.edu), Jun 06 2008
Number of partitions of n into parts 2, 3, and 4, with at least one part 3. - Joerg Arndt, Feb 03 2013
For several values of p and q the sequence (A005044(n+p) - A005044(n-q)) leads to known sequences, see the crossrefs. - Johannes W. Meijer, Oct 12 2013
For n>=3, number of partitions of n-3 into parts 2, 3, and 4. - David Neil McGrath, Aug 30 2014
Also, a(n) is the number of partitions mu of n of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even (see below example). - John M. Campbell, Jan 29 2016
For n > 1, number of triangles with odd side lengths and perimeter 2*n-3. - Wesley Ivan Hurt, May 13 2019
Number of partitions of n+1 into 4 parts whose largest two parts are equal. - Wesley Ivan Hurt, Jan 06 2021
For n>=3, number of weak partitions of n-3 (that is, allowing parts of size 0) into three parts with no part exceeding (n-3)/2. Also, number of weak partitions of n-3 into three parts, all of the same parity as n-3. - Kevin Long, Feb 20 2021
Also, a(n) is the number of incongruent acute triangles formed from the vertices of a regular n-gon. - Frank M Jackson, Nov 04 2022

Examples

			There are 4 triangles of perimeter 11, with sides 1,5,5; 2,4,5; 3,3,5; 3,4,4. So a(11) = 4.
G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + 4*x^11 + 3*x^12 + ...
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n = 15, there are a(n)=7 partitions mu |- 15 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even:
(13,1,1) |- 15
(11,3,1) |- 15
(9,5,1) |- 15
(9,3,3) |- 15
(7,7,1) |- 15
(7,5,3) |- 15
(5,5,5) |- 15
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Wiley, NY, Chap.10, Section 10.2, Problems 5 and 6, pp. 451-2.
  • D. Olivastro: Ancient Puzzles. Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam Books, 1993. See p. 158.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 8, #30 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

See A266755 for a version without the three leading zeros.
Both bisections give (essentially) A001399.
(See the comments.) Cf. A008615 (p=1, q=3, offset=0), A008624 (3, 3, 0), A008679 (3, -1, 0), A026922 (1, 5, 1), A028242 (5, 7, 0), A030451 (6, 6, 0), A051274 (3, 5, 0), A052938 (8, 4, 0), A059169 (0, 6, 1), A106466 (5, 4, 0), A130722 (2, 7, 0)
Cf. this sequence (k=3), A288165 (k=4), A288166 (k=5).
Number of k-gons that can be formed with perimeter n: this sequence (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Haskell
    a005044 = p [2,3,4] . (subtract 3) where
    p _ 0 = 1
    p [] _ = 0
    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
  • Maple
    A005044 := n-> floor((1/48)*(n^2+3*n+21+(-1)^(n-1)*3*n)): seq(A005044(n), n=0..73);
    A005044 := -1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[n_] := Round[If[EvenQ[n], n^2, (n + 3)^2]/48] (* Peter Bertok, Jan 09 2002 *)
    CoefficientList[Series[x^3/((1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 105}], x] (* Robert G. Wilson v, Jun 02 2004 *)
    me[n_] := Module[{i, j, sum = 0}, For[i = Ceiling[(n - 3)/3], i <= Floor[(n - 3)/2], i = i + 1, For[j = Ceiling[(n - i - 3)/2], j <= i, j = j + 1, sum = sum + 1] ]; Return[sum]; ] mine = Table[me[n], {n, 1, 11}]; (* Srikanth (sriperso(AT)gmail.com), Aug 02 2008 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{0,0,0,1,0,1,1,2,1},80] (* Harvey P. Dale, Sep 22 2014 *)
    Table[Length@Select[IntegerPartitions[n, {3}], Max[#]*180 < 90 n &], {n, 1, 100}] (* Frank M Jackson, Nov 04 2022 *)
  • PARI
    a(n) = round(n^2 / 12) - (n\2)^2 \ 4
    
  • PARI
    a(n) = (n^2 + 6*n * (n%2) + 24) \ 48
    
  • PARI
    a(n)=if(n%2,n+3,n)^2\/48 \\ Charles R Greathouse IV, May 02 2016
    
  • PARI
    concat(vector(3), Vec((x^3)/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^70))) \\ Felix Fröhlich, Jun 07 2017
    

Formula

a(n) = a(n-6) + A059169(n) = A070093(n) + A070101(n) + A024155(n).
For odd indices we have a(2*n-3) = a(2*n). For even indices, a(2*n) = nearest integer to n^2/12 = A001399(n).
For all n, a(n) = round(n^2/12) - floor(n/4)*floor((n+2)/4) = a(-3-n) = A069905(n) - A002265(n)*A002265(n+2).
For n = 0..11 (mod 12), a(n) is respectively n^2/48, (n^2 + 6*n - 7)/48, (n^2 - 4)/48, (n^2 + 6*n + 21)/48, (n^2 - 16)/48, (n^2 + 6*n - 7)/48, (n^2 + 12)/48, (n^2 + 6*n + 5)/48, (n^2 - 16)/48, (n^2 + 6*n + 9)/48, (n^2 - 4)/48, (n^2 + 6*n + 5)/48.
Euler transform of length 4 sequence [ 0, 1, 1, 1]. - Michael Somos, Sep 04 2006
a(-3 - n) = a(n). - Michael Somos, Sep 04 2006
a(n) = sum(ceiling((n-3)/3) <= i <= floor((n-3)/2), sum(ceiling((n-i-3)/2) <= j <= i, 1 ) ) for n >= 1. - Srikanth K S, Aug 02 2008
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n >= 9. - David Neil McGrath, Aug 30 2014
a(n+3) = a(n) if n is odd; a(n+3) = a(n) + floor(n/4) + 1 if n is even. Sketch of proof: There is an obvious injective map from perimeter-n triangles to perimeter-(n+3) triangles defined by f(a,b,c) = (a+1,b+1,c+1). It is easy to show f is surjective for odd n, while for n=2k the image of f is only missing the triangles (a,k+2-a,k+1) for 1 <= a <= floor(k/2)+1. - James East, May 01 2016
a(n) = round(n^2/48) if n is even; a(n) = round((n+3)^2/48) if n is odd. - James East, May 01 2016
a(n) = (6*n^2 + 18*n - 9*(-1)^n*(2*n + 3) - 36*sin(Pi*n/2) - 36*cos(Pi*n/2) + 64*cos(2*Pi*n/3) - 1)/288. - Ilya Gutkovskiy, May 01 2016
a(n) = A325691(n-3) + A000035(n) for n>=3. The bijection between partition(n,[2,3,4]) and not-over-half partition(n,3,n/2) + partition(n,2,n/2) can be built by a Ferrers(part)[0+3,1,2] map. And the last partition(n,2,n/2) is unique [n/2,n/2] if n is even, it is given by A000035. - Yuchun Ji, Sep 24 2020
a(4n+3) = a(4n) + n+1, a(4n+4) = a(4n+1) = A000212(n+1), a(4n+5) = a(4n+2) + n+1, a(4n+6) = a(4n+3) = A007980(n). - Yuchun Ji, Oct 10 2020
a(n)-a(n-4) = A008615(n-1). - R. J. Mathar, Jun 23 2021
a(n)-a(n-2) = A008679(n-3). - R. J. Mathar, Jun 23 2021

Extensions

Additional comments from Reinhard Zumkeller, May 11 2002
Yaglom reference and mod formulas from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 27 2000
The reference to Alcuin of York (735-804) was provided by Hermann Kremer (hermann.kremer(AT)onlinehome.de), Jun 18 2004

A070085 a(n) = A070080(n)^2 + A070081(n)^2 - A070082(n)^2.

Original entry on oeis.org

1, 1, 4, 1, -1, 4, 1, -3, 9, 4, 2, 1, -5, -7, 9, 4, 0, 16, 1, -7, -11, 9, 7, 4, -2, -4, 16, 1, -9, -15, 9, -17, 5, 25, 4, -4, -8, 16, 14, 1, -11, -19, 9, -23, 3, 1, 25, 4, -6, -12, 16, -14, 12, 36, 1, -13, -23, 9, -29, 1, -31, -3, 25, 23, 4, -8
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

The integer triangle [A070080(n)<=A070081(n)<=A070082(n)] is acute iff a(n)>0, right iff a(n)=0 and obtuse iff a(0)<0.

Crossrefs

Programs

  • Mathematica
    maxPer = m = 22;
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[Ceiling[ per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    #[[1]]^2 + #[[2]]^2 - #[[3]]^2& /@ triangles (* Jean-François Alcover, Jul 31 2018 *)

A070093 Number of acute integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 4, 3, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 9, 8, 10, 9, 10, 10, 11, 12, 12, 12, 14, 13, 16, 14, 17, 16, 17, 18, 18, 20, 20, 20, 22, 22, 24, 23, 25, 26, 26, 27, 28, 30, 30, 29, 32, 31, 35, 33, 36, 36, 38, 39, 40, 40
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is acute iff A070085(k) > 0.

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; two of them are acute, as 2^2+3^2<16=4^2, therefore a(9)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070101(n) - A024155(n);
a(n) = A042154(n) + A070098(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1-sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070101 Number of obtuse integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 3, 2, 3, 3, 5, 3, 7, 4, 8, 5, 9, 7, 10, 8, 11, 9, 14, 11, 16, 12, 18, 14, 19, 17, 21, 18, 23, 21, 27, 22, 30, 24, 32, 27, 34, 30, 37, 33, 40, 35, 44, 37, 47, 40, 50, 44, 53, 49, 56, 52, 60, 55, 64, 57, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is obtuse iff A070085(k) < 0.

Examples

			For n=14 there are A005044(14)=4 integer triangles: [2,6,6], [3,5,6], [4,4,6] and [4,5,5]; two of them are obtuse, as 3^2+5^2<36=6^2 and 4^2+4^2<36=6^2, therefore a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070093(n) - A024155(n).
a(n) = A024156(n) + A070106(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)}
(1-sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070109 Number of right integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142, A051516.
a(n) is nonzero iff n is in A024364.

Examples

			For n=30 there are A005044(30) = 19 integer triangles; only one is right: 5+12+13 = 30, 5^2+12^2 = 13^2; therefore a(30) = 1.
		

Crossrefs

Programs

  • Mathematica
    unitaryDivisors[n_] := Cases[Divisors[n], d_ /; GCD[d, n/d] == 1];
    A078926[n_] := Count[unitaryDivisors[n], d_ /; OddQ[d] && Sqrt[n] < d < Sqrt[2n]];
    a[n_] := If[EvenQ[n], A078926[n/2], 0];
    Table[a[n], {n, 1, 1716}] (* Jean-François Alcover, Oct 04 2021 *)

Formula

a(n) = A078926(n/2) if n is even; a(n)=0 if n is odd.
a(n) = A051493(n) - A070094(n) - A070102(n).
a(n) <= A024155(n).

Extensions

Secondary offset added by Antti Karttunen, Oct 07 2017

A070201 Number of integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 8, 0, 0, 0, 1, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = #{k | A070083(k) = n and A070200(k) = exact inradius};
a(n) = A070203(n) + A070204(n);
a(n) = A070205(n) + A070206(n) + A024155(n);
a(odd) = 0.

Examples

			a(36)=2, as there are two integer triangles with integer inradius having perimeter=32:
First: [A070080(368), A070081(368), A070082(368)] = [9,10,17], for s = A070083(368)/2 = (9+10+17)/2 = 18: inradius = sqrt((s-9)*(s-10)*(s-17)/s) = sqrt(9*8*1/18) = sqrt(4) = 2; therefore A070200(368) = 2.
2nd: [A070080(370), A070081(370), A070082(370)] = [9,12,15], for s = A070083(370)/2 = (9+12+15)/2 = 18: inradius = sqrt((s-9)*(s-12)*(s-15)/s) = sqrt(9*6*3/18) = sqrt(9) = 3; therefore A070200(370) = 3.
		

Crossrefs

Programs

  • Ruby
    def A(n)
      cnt = 0
      (1..n / 3).each{|a|
        (a..(n - a) / 2).each{|b|
          c = n - a - b
          if a + b > c
            s = n / 2r
            t = (s - a) * (s - b) * (s - c) / s
            if t.denominator == 1
              t = t.to_i
              cnt += 1 if Math.sqrt(t).to_i ** 2 == t
            end
          end
        }
      }
      cnt
    end
    def A070201(n)
      (1..n).map{|i| A(i)}
    end
    p A070201(100) # Seiichi Manyama, Oct 06 2017

A024156 Number of integer-sided triangles with sides a,b,c, a

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 2, 3, 2, 4, 3, 6, 3, 7, 4, 8, 6, 9, 7, 10, 8, 12, 10, 15, 11, 16, 13, 18, 15, 19, 17, 21, 19, 25, 21, 28, 22, 30, 25, 32, 28, 35, 31, 38, 33, 41, 35, 45, 38, 47, 42, 51, 46, 53, 50, 57, 52, 61, 55, 65, 58, 68, 63, 74, 67, 77, 71, 82, 74, 86, 77, 92, 82, 96, 87
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    r[n_] := Module[{a, b}, Reduce[a>1 && a n && 2n(a + b) < 2a*b + n^2, {a, b}, Integers]];
    a[n_] := Module[{rn = r[n]}, Which[rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error: ", n, " ", rn]]];
    Array[a, 84] (* Jean-François Alcover, Mar 01 2019 *)

A070136 Numbers m such that [A070080(m), A070081(m), A070082(m)] is a right integer triangle.

Original entry on oeis.org

17, 116, 212, 370, 493, 850, 1297, 1599, 1629, 2574, 2778, 3751, 4298, 4370, 5251, 5286, 6476, 9169, 10066, 12398, 12441, 12520, 14414, 16365, 16602, 19831, 21231, 21486, 24060, 26125, 27245, 29230, 33625, 33658
Offset: 1

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142.

Examples

			116 is a term: [A070080(116), A070081(116), A070082(116)]=[6,8,10], A070085(116)=6^2+8^2-10^2=36+64-100=0.
212 is a term: [A070080(212), A070081(212), A070082(212)]=[5,12,13], A070085(212)=5^2+12^2-13^2=25+144-169=0.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a^2 + b^2 == c^2] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A336757 Number of primitive integer-sided triangles whose sides a < b < c are in arithmetic progression with a perimeter = n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 5, 0, 0, 2, 0, 0, 6, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 8, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 5, 0, 0, 11, 0, 0, 4
Offset: 1

Author

Bernard Schott, Sep 20 2020

Keywords

Comments

Equivalently: number of primitive integer-sided triangles such that b = (a+c)/2 with a < c and perimeter = n.
As the perimeter of these triangles = 3*b where b is the middle side, a(n) >= 1 iff n = 3*b, with b >= 3.
When b is prime, all the triangles of perimeter n = 3*b are primitive, hence in this case: a(n) = A024164(n).
For the corresponding triples (primitive or not), miscellaneous properties and references, see A336750.

Examples

			a(9) = 1 for the smallest such triangle (2, 3, 4).
a(12) = 1 for the Pythagorean triple (3, 4, 5).
a(15) = 2 for the two triples (3, 5, 7) and (4, 5, 6).
a(18) = 1 for the triple (5, 6, 7); the other triple (4, 6, 8) corresponding to a perimeter = 18 is not a primitive triple.
		

Crossrefs

Cf. A336750 (triples, primitive or not), A336755 (primitive triples), A336756 (perimeters of primitive triangles).
Cf. A024164 (number of such triangles, primitive or not).
Similar sequences: A005044 (integer-sided triangles), A024155 (right triangles), A070201 (with integral inradius).

Formula

For n = 3*b, b >= 3, a(n) = A023022(b) = A000010(b)/2, otherwise a(n) = 0.

A070140 Number of acute integer triangles with perimeter n having integral area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A070141(n) - A024155(n).

Crossrefs

Showing 1-10 of 16 results. Next