cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070101 Number of obtuse integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 3, 2, 3, 3, 5, 3, 7, 4, 8, 5, 9, 7, 10, 8, 11, 9, 14, 11, 16, 12, 18, 14, 19, 17, 21, 18, 23, 21, 27, 22, 30, 24, 32, 27, 34, 30, 37, 33, 40, 35, 44, 37, 47, 40, 50, 44, 53, 49, 56, 52, 60, 55, 64, 57, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is obtuse iff A070085(k) < 0.

Examples

			For n=14 there are A005044(14)=4 integer triangles: [2,6,6], [3,5,6], [4,4,6] and [4,5,5]; two of them are obtuse, as 3^2+5^2<36=6^2 and 4^2+4^2<36=6^2, therefore a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070093(n) - A024155(n).
a(n) = A024156(n) + A070106(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)}
(1-sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070105 Number of integer triangles with perimeter n and prime side lengths which are obtuse and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 5, 0, 5, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = 0 if n is even. - Robert Israel, Jul 26 2024

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,q,bmin,bmax,t;
      t:= 0;
      if n::even then return 0 fi;
      for a from 1 to n/3 by 2 do
        if not isprime(a) then next fi;
        bmin:= max(a+1,(n+1)/2-a); if bmin::even then bmin:= bmin+1 fi;
        q:= (n^2-2*n*a)/(2*(n-a));
        if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi;
        t:= t + nops(select(b -> isprime(b) and isprime(n-a-b), [seq(b,b=bmin .. bmax,2)]))
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 26 2024

A070106 Number of integer triangles with perimeter n which are obtuse and isosceles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n)=A070101(n)-A024156(n); a(n)=A059169(n)-A070098(n).

Examples

			For n=11 there are A005044(11)=4 integer triangles: [1,5,5], [2,4,5], [3,3,5] and [3,4,4]; only one of the two obtuses ([2,4,5] and [3,3,5]) is also isosceles; therefore a(11)=1.
		

Crossrefs

A070104 Number of integer triangles with perimeter n and relatively prime side lengths which are obtuse and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 2, 3, 1, 4, 3, 6, 2, 7, 4, 8, 4, 8, 6, 10, 6, 12, 8, 14, 8, 16, 11, 18, 11, 17, 14, 21, 12, 25, 18, 25, 15, 30, 19, 32, 20, 32, 25, 38, 23, 40, 28, 41, 28, 47, 31, 51, 34, 46, 40, 55, 35, 61, 44, 58, 41, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,q,bmin,bmax,t;
      t:= 0;
      for a from 1 to n/3 do
        if n::even then bmin:= max(a+1,n/2-a+1) else bmin:= max(a+1,(n+1)/2-a) fi;
        q:= (n^2-2*n*a)/(2*(n-a));
        if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi;
        t:= t + nops(select(b -> igcd(a,b,n-a-b) = 1, [$bmin .. bmax]))
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 26 2024

A070130 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse scalene integer triangle.

Original entry on oeis.org

8, 13, 20, 21, 25, 29, 30, 36, 37, 41, 42, 44, 49, 50, 56, 57, 59, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 86, 87, 89, 96, 97, 99, 100, 101, 102, 105, 110, 111, 113, 115, 122, 123, 125, 126, 127, 128, 130, 131, 138, 139, 141, 143
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(20)=67: [A070080(67), A070081(67), A070082(67)]=[4<7<9], A070085(67)=4^2+7^2-9^2=16+49-81=-16<0.
		

Crossrefs

Showing 1-5 of 5 results.