cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A070101 Number of obtuse integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 3, 2, 3, 3, 5, 3, 7, 4, 8, 5, 9, 7, 10, 8, 11, 9, 14, 11, 16, 12, 18, 14, 19, 17, 21, 18, 23, 21, 27, 22, 30, 24, 32, 27, 34, 30, 37, 33, 40, 35, 44, 37, 47, 40, 50, 44, 53, 49, 56, 52, 60, 55, 64, 57, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is obtuse iff A070085(k) < 0.

Examples

			For n=14 there are A005044(14)=4 integer triangles: [2,6,6], [3,5,6], [4,4,6] and [4,5,5]; two of them are obtuse, as 3^2+5^2<36=6^2 and 4^2+4^2<36=6^2, therefore a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070093(n) - A024155(n).
a(n) = A024156(n) + A070106(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)}
(1-sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070098 Number of integer triangles with perimeter n which are acute and isosceles.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 14, 15, 15, 16, 15
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Equivalently, the number of obtuse isosceles integer triangles with base n. - Charlie Marion, Jun 18 2019

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; both isosceles are also acute.
		

Crossrefs

Programs

  • Magma
    [Floor(k/2)-Floor(k/(2 + Sqrt(2)))-((k + 1) mod 2): k in [1..76]]; // Marius A. Burtea, Jun 21 2019

Formula

a(n) = A070093(n)-A024154(n); a(n) = A059169(n)-A070106(n).
a(n) = floor(n/2) - floor(n/(2 + sqrt(2))) - ((n + 1) mod 2). - David Pasino, Jun 27 2016
a(n) = A004526(n-1) - A183138(n). - R. J. Mathar, May 22 2019

A070108 Number of integer triangles with perimeter n and prime side lengths which are obtuse and isosceles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(k)<=1 until k = 140, for k = 141 there are A005044(141)=432 integer triangles, a(141)=2 as
[37=37<67]: 37+37+67 = 141 and 2*(37^2)<67^2 and 37, 67 are primes,
[41=41<59]: 41+41+59 = 141 and 2*(41^2)<59^2 and 41, 59 are primes.
		

Crossrefs

A070107 Number of integer triangles with perimeter n and relatively prime side lengths which are obtuse and isosceles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 1, 3, 2, 1, 1, 1, 0, 4, 2, 2, 2, 4, 1, 3, 2, 3, 2, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

A070133 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse isosceles integer triangle.

Original entry on oeis.org

5, 14, 26, 32, 52, 61, 82, 91, 104, 118, 133, 146, 163, 182, 202, 219, 242, 246, 266, 291, 314, 342, 347, 372, 404, 432, 437, 467, 472, 504, 542, 547, 577, 582, 619, 625, 663, 709, 714, 751, 757, 801, 807, 853, 858, 907, 913
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(5)=52: [A070080(52), A070081(52), A070082(52)]=[5=5<8], A070085(52)=5^2+5^2-8^2=25+25-64=-14<0.
		

Crossrefs

Showing 1-5 of 5 results.