cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A188158 Area A of the triangles such that A and the sides are integers.

Original entry on oeis.org

6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2011

Keywords

Comments

The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24).
If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011

Examples

			a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16.
		

Crossrefs

Programs

  • Maple
    # storage of areas in T(i)
    T:=array(1..4000):nn:=100:k:=1:for a from 1
      to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):   if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else
      fi:od:od:od:
    # sort of T(i)
    for jj from 1 to k-1 do: ii:=jj:for k1 from  ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T,set):print(liste):
    # second program:
    isA188158 := proc(A::integer)
        local Asqr, s,a,b,c ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr then
                            return true ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        false ;
    end proc:
    for n from 3 to 600 do
        if isA188158(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *)

A120062 Number of triangles with integer sides a <= b <= c having integer inradius n.

Original entry on oeis.org

1, 5, 13, 18, 15, 45, 24, 45, 51, 52, 26, 139, 31, 80, 110, 89, 33, 184, 34, 145, 185, 103, 42, 312, 65, 96, 140, 225, 36, 379, 46, 169, 211, 116, 173, 498, 38, 123, 210, 328, 44, 560, 60, 280, 382, 134, 64, 592, 116, 228, 230, 271, 47, 452, 229, 510, 276, 134, 54
Offset: 1

Views

Author

Hugo Pfoertner, Jun 11 2006

Keywords

Comments

It is conjectured that the longest possible side c of a triangle with integer sides and inradius n is given by A057721(n) = n^4 + 3*n^2 + 1.
For n >= 1, a(n) >= 1 because triangle (a, b, c) = (n^2 + 2, n^4 + 2*n^2 + 1, n^4 + 3*n^2 + 1) has inradius n. - David W. Wilson, Jun 17 2006
Previous name was "Number of triangles with integer sides a<=bA362669); so, now effectively, a(10) = 52. - Bernard Schott, Apr 24 2023

Examples

			a(1)=1: {3,4,5} is the only triangle with integer sides and inradius 1.
a(2)=5: {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17} are the only triangles with integer sides and inradius 2.
a(4)=A120252(1)+A120252(2)+A120252(4)=1+4+13 because 1, 2 and 4 are the factors of 4. The 1 primitive triangle with inradius n=1 is (3,4,5). The 4 primitive triangles with n=2 are (5,12,13), (9,10,17), (7,15,20), (6,25,29). The 13 primitive triangles with n=4 are (13,14,15), (15,15,24), (11,25,30), (15,26,37), (10,35,39), (9,40,41), (33,34,65), (25,51,74), (9,75,78), (11,90,97), (21,85,104), (19,153,170), (18,289,305). (Primitive means GCD(a, b, c, n)=1.)
		

Crossrefs

Cf. A078644 [Pythagorean triangles with inradius n], A057721 [n^4+3*n^2+1].
Let S(n) be the set of triangles with integer sides a<=b<=c and inradius n. Then:
A120062(n) gives number of triangles in S(n).
A120261(n) gives number of triangles in S(n) with gcd(a, b, c) = 1.
A120252(n) gives number of triangles in S(n) with gcd(a, b, c, n) = 1.
A005408(n) = 2n+1 gives shortest short side a of triangles in S(n).
A120064(n) gives shortest middle side b of triangles in S(n).
A120063(n) gives shortest long side c of triangles in S(n).
A120570(n) gives shortest perimeter of triangles in S(n).
A120572(n) gives smallest area of triangles in S(n).
A058331(n) = 2n^2+1 gives longest short side a of triangles in S(n).
A082044(n) = n^4+2n^2+1 gives longest middle side b of triangles in S(n).
A057721(n) = n^4+3n^2+1 gives longest long side c of triangles in S(n).
A120571(n) = 2n^4+6n^2+4 gives longest perimeter of triangles in S(n).
A120573(n) = gives largest area of triangles in S(n).
Cf. A120252 [primitive triangles with integer inradius], A120063 [minimum of longest sides], A057721 [maximum of longest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A058331 [maximum of shortest sides], A007237 [number of triangles with integer sides and area = n times perimeter].

Programs

  • Mathematica
    (* See link above. *)

Formula

The even-numbered terms are given by a(2*n)=A007237(n).
a(n) = Sum_{k|n} A120252(k).

Extensions

More terms from Graeme McRae and Hugo Pfoertner, Jun 12 2006
Name corrected by Bernard Schott, Apr 24 2023

A289218 Areas of integer-sided triangles whose area equals twice their perimeter.

Original entry on oeis.org

84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 684, 1224
Offset: 1

Views

Author

Zhining Yang, Jun 28 2017

Keywords

Comments

There are no further terms.
One term, 168, corresponds to exactly two different triangles, namely [14, 30, 40] and [10, 35, 39], both with perimeter 84. The remaining terms correspond to unique triangles. - Jeppe Stig Nielsen, Mar 04 2020

Examples

			The areas 84,96,108,120,132, ... pertain respectively to triangles with sides (13,14,15), (12,16,20), (15,15,24), (10,24,26), (11,25,30), ..., equal twice their perimeter 42,48,54,60,66,...
		

Crossrefs

2nd row of the irregular triangle in A290451.
Cf. A332922.

Programs

  • Mathematica
    f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 200, {3}]], f @@ # == 4 Total@ # &] ] (* Michael De Vlieger, Jul 03 2017 *)

Extensions

Duplicate term 168 (previous a(9)) removed by Jeppe Stig Nielsen, Mar 04 2020

A289155 Smallest area of triangle with integer sides and area = n times perimeter.

Original entry on oeis.org

24, 84, 192, 336, 540, 756, 1134, 1344, 1710, 2100, 2640, 3000, 4056, 4116, 4680, 5376, 6936, 6804, 8664, 8400, 9240, 10164, 12696, 12000, 13500, 14196, 15390, 16296, 20184, 18720, 23064, 21504, 23232, 24276, 26040, 27000, 32856, 30324
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4)=336 means for the smallest triangle (a,b,c) = (26,28,30), the area is 336, which is 4 times the perimeter 84.
		

Crossrefs

a(n) is the leading entry in row n of the triangle in A290451.

Programs

  • PARI
    for(k=1, 50, n=0;A=10^9; d=4*k^2; e=3*d; for(b=1, sqrt(e), for (c=2*k, e/b, if(b*c>d&&c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++; s=2*(a+b+c)*k;if(s
    				

Formula

a(n) = A120572(2n). - Ray Chandler, Jul 27 2017

A120063 Shortest side c of all integer-sided triangles with sides a<=b<=c and inradius n.

Original entry on oeis.org

5, 10, 12, 15, 25, 24, 35, 30, 36, 39, 55, 45, 65, 63, 53, 60, 85, 68, 95, 75, 77, 88, 115, 85, 125, 130, 108, 105, 145, 106, 155, 120, 132, 170, 137, 135, 185, 190, 156, 150, 205, 154, 215, 165, 159, 230, 235, 170, 245, 195, 204, 195, 265, 204, 200, 195, 228, 290
Offset: 1

Views

Author

Hugo Pfoertner, Jun 13 2006

Keywords

Comments

Terms a(11),..., a(100) computed by Thomas Mautsch (mautsch(AT)ethz.ch).
Empirically, 2*sqrt(3) < a(n)/n <= 5. The lower bound is provably tight, the upper bound seems to be achieved infinitely often, e.g, for prime n >= 5. It appears that a(p) = 5p for prime p != 3. - David W. Wilson, Jun 17 2006
Minimum of longest side occurring among all A120062(n) triangles having integer sides with integer inradius n.

Examples

			a(1)=5 because the only triangle with integer sides and inradius 1 is {3,4,5}; its longest side is 5.
a(2)=10: The triangles with inradius 2 are {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17}. The minimum of their longest sides is min(13,10,29,20,17)=10.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A120062 [triangles with integer inradius], A120252 [primitive triangles with integer inradius], A057721 [maximum of longest sides], A058331 [maximum of shortest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A007237.

A120064 Shortest side b of all integer-sided triangles with sides a<=b<=c and inradius n.

Original entry on oeis.org

4, 8, 10, 14, 20, 20, 28, 28, 30, 39, 44, 40, 52, 56, 50, 56, 68, 60, 76, 70, 70, 87, 92, 80, 100, 100, 90, 97, 116, 100, 124, 112, 110, 136, 120, 120, 148, 152, 130, 140, 164, 140, 172, 154, 150, 184, 188, 160, 196, 174, 170, 182, 212, 180, 196, 189, 190, 232, 236
Offset: 1

Views

Author

Hugo Pfoertner, Jun 13 2006

Keywords

Comments

Terms a(11),..., a(100) computed by Thomas Mautsch (mautsch(AT)ethz.ch).

Examples

			a(1)=2 because the only triangle with integer sides a<=b<c and inradius 1 is {3,4,5}; its middle side is 4.
a(2)=8: The triangles with inradius 2 are {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17}. The minimum of their middle sides is min(12,8,25,15,10)=8.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Cf. A120062 [triangles with integer inradius], A120252 [primitive triangles with integer inradius], A057721 [maximum of longest sides], A120063 [minimum of longest sides], A058331 [maximum of shortest sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A007237.
See A120062 for sequences related to integer-sided triangles with integer inradius n.

A289156 Largest area of triangles with integer sides and area = n times perimeter.

Original entry on oeis.org

60, 1224, 8436, 34320, 103020, 254040, 546084, 1060896, 1907100, 3224040, 5185620, 8004144, 11934156, 17276280, 24381060, 33652800, 45553404, 60606216, 79399860, 102592080, 130913580, 165171864, 206255076, 255135840, 312875100, 380625960, 459637524, 551258736
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4) = 34320 means for the largest triangles (a,b,c) = (66,4225,4289), the area is 34320 which is 4 times the perimeter 8580.
		

Crossrefs

Programs

  • Mathematica
    Table[4 n (2 n^2 + 1) (4 n^2 + 1), {n, 27}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {60, 1224, 8436, 34320, 103020, 254040}, 27] (* or *) Rest@ CoefficientList[Series[12 x (5 + 72 x + 166 x^2 + 72 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 27}], x] (* Michael De Vlieger, Jul 03 2017 *)
  • PARI
    Vec(12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6 + O(x^30)) \\ Colin Barker, Jun 28 2017

Formula

From Colin Barker, Jun 28 2017: (Start)
G.f.: 12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6.
a(n) = 4*n*(2*n^2 + 1)*(4*n^2 + 1).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)
a(n) = A120573(2*n). - Ray Chandler, Jul 27 2017
From Elmo R. Oliveira, Sep 01 2025: (Start)
E.g.f.: 4*exp(x)*x*(15 + 138*x + 206*x^2 + 80*x^3 + 8*x^4).
a(n) = 12*A005900(n)*A053755(n) = A053755(n)*A007900(n)/2. (End)

A371973 a(n) is the number of distinct areas > 0 of triangles with integer sides and perimeter n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 13, 19, 14, 21, 19, 23, 20, 27, 23, 30, 27, 32, 29, 35, 32, 39, 34, 44, 39, 48, 43, 52, 47, 55, 51, 60, 53, 63, 59, 69, 58, 74, 67, 78, 73, 84, 75, 90, 81, 92, 88, 101, 91, 108, 93, 112, 106
Offset: 3

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A026810, A070083, A135622 (which has many crossrefs related to areas of triangles).

Programs

  • PARI
    A2(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    a371973(n) = {my (A=List()); forpart (v=n, listput(A, A2(v[1],v[2],v[3])), [1,(n-1)\2], [3,3]); #Set(A)};
    
  • Python
    def A371973(n): return len(set((2*(b+c)-n)*(n-2*b)*(n-2*c) for c in range((n+2)//3, (n+1)//2) for b in range((n-c+1)//2, c+1))) # David Radcliffe, Aug 01 2025

Formula

a(n) = |{A135622(k) : A070083(k) = n}| = |{A135622(k) : A026810(n) < k <= A026810(n+1)}|. - Peter Munn, Jul 29 2025

Extensions

b-file corrected by David Radcliffe, Aug 01 2025

A332689 Number of distinct areas of integer-sided triangles whose area equals n times their perimeter.

Original entry on oeis.org

5, 17, 41, 41, 47, 127, 77, 81, 171, 132, 99, 283, 94, 205, 349, 158, 115, 457, 122, 296, 530, 267, 134, 546, 219, 260, 428, 471, 130, 953, 144, 264, 613, 332, 557, 1031, 139, 346, 614, 600, 162, 1381, 169, 562, 1132, 348, 186, 1000, 363, 593, 688, 571, 164, 1123
Offset: 1

Views

Author

Jeppe Stig Nielsen, Feb 19 2020

Keywords

Comments

Gives the row lengths of the irregular array A290451.

Examples

			For n = 2, there are 18 different (noncongruent) Heronian triangles whose area equals twice their perimeter, so A007237(2) = 18. However, two of those 18 triangles share the area 168. So there are only 17 distinct areas. Therefore, a(2) = 17.
		

Crossrefs

Programs

  • Mathematica
    a[k_] := Block[{v={},r,s,t}, Do[ If[r <= s && 4 k^2 < r s <= 12 k^2 && IntegerQ[t = 4 k^2 (r + s)/(r s - 4 k^2)] && t >= s, AppendTo[v, r + s + t]], {r, Floor[2 Sqrt[3] k]}, {s, Floor[4 k^2/r], Ceiling[12 k^2/r]}]; Length@ Union@ v]; Array[a, 20] (* Giovanni Resta, Mar 04 2020 *)
  • Python
    from math import sqrt
    def A332689(n):
        L = []; k = 4*n*n
        for x in range(1, int(2*sqrt(3)*n) + 1):
            for y in range(max(int(k/x) + 1, x), int((k + 2*n*sqrt(k + x*x))/x) + 1):
                if k*(x+y)%(x*y-k) == 0:
                    s = x + y + k*(x+y)//(x*y-k)
                    if s not in L: L.append(s)
        return len(L)  # Ya-Ping Lu, Dec 28 2023

Extensions

a(8)-a(54) from Giovanni Resta, Mar 04 2020

A332926 2*a(n) are the perimeters of distinct triangles with integer sides i <= j <= k, whose area equals 6 times their perimeter. Terms occurring more than once belong to different triangles.

Original entry on oeis.org

63, 64, 65, 68, 70, 70, 72, 77, 77, 80, 81, 82, 84, 85, 88, 90, 91, 93, 95, 99, 105, 108, 110, 112, 112, 115, 117, 125, 126, 126, 128, 135, 136, 140, 143, 145, 152, 152, 153, 154, 160, 165, 168, 174, 180, 182, 182, 187, 198, 203, 203, 203, 205, 205, 208, 217
Offset: 1

Views

Author

Hugo Pfoertner, Mar 02 2020

Keywords

Comments

There are A007237(6) = 139 integer-sided triangles with 6*area = perimeter, with terms 70, 77, 112, 126, 152, 182, 205, 260, 513, and 798 corresponding to pairs, and terms 203 to triples of such triangles with different sides.

Crossrefs

The terms of A332879, divided by 12, are all terms of this sequence, but omitting distinct triangles with identical perimeters.
Showing 1-10 of 10 results.