cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1269 results. Next

A166101 Integers k such that A166100(k)/A005408(k) is not an integer.

Original entry on oeis.org

1, 13, 37, 121, 181, 337, 433, 793, 937, 1093, 1261, 1633, 2521, 3037, 3313, 3901, 4213, 4537, 5221, 7141, 7561, 8437, 9841, 10333, 10837, 11353, 11881, 14701, 15301, 17173, 19153, 19837, 21961, 22693, 23437, 25741, 27337, 28153, 29821
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2009

Keywords

Crossrefs

A166102 gives the corresponding odd numbers. Cf. A166272.

A130845 a(4n) = a(4n+1) = a(4n+2) = A001477(n), a(4n+3) = A005408(n).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 3, 2, 2, 2, 5, 3, 3, 3, 7, 4, 4, 4, 9, 5, 5, 5, 11, 6, 6, 6, 13, 7, 7, 7, 15, 8, 8, 8, 17, 9, 9, 9, 19, 10, 10, 10, 21, 11, 11, 11, 23, 12, 12, 12, 25, 13, 13, 13, 27, 14, 14, 14, 29, 15, 15, 15, 31, 16, 16, 16, 33, 17, 17, 17
Offset: 0

Views

Author

Paul Curtz, Jul 20 2007

Keywords

Programs

  • Mathematica
    CoefficientList[Series[x^3(1+x+x^2+x^3+x^4)/((1-x)^2(1+x)^2(1+x^2)^2),{x,0,80}],x] (* or *) LinearRecurrence[{0,0,0,2,0,0,0,-1},{0,0,0,1,1,1,1,3},80] (* Harvey P. Dale, Mar 04 2012 *)

Formula

O.g.f.: x^3*(1+x+x^2+x^3+x^4)/((1-x)^2*(1+x)^2*(1+x^2)^2). - R. J. Mathar, Aug 22 2008
a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=3, a(n)=2*a(n-4)- a(n-8). - Harvey P. Dale, Mar 04 2012
a(n) = cos(n*Pi/2)/4-(n-1)*(2*sin(n*Pi/2)+(-1)^n-5)/16. - Wesley Ivan Hurt, May 05 2021

Extensions

Edited by N. J. A. Sloane, Sep 28 2007

A131733 Primes (A000040) - odds (A005408).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 4, 4, 6, 10, 10, 14, 16, 16, 18, 22, 26, 26, 30, 32, 32, 36, 38, 42, 48, 50, 50, 52, 52, 54, 66, 68, 72, 72, 80, 80, 84, 88, 90, 94, 98, 98, 106, 106, 108, 108, 118, 128, 130, 130, 132, 136, 136, 144, 148, 152, 156, 156, 160, 162, 162, 170
Offset: 1

Views

Author

Paul Curtz, Sep 17 2007

Keywords

Programs

  • Maple
    A131733 := proc(n) ithprime(n)-2*n+1 ; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    With[{nn=70},Prime[Range[nn]]-Range[1,2nn,2]] (* Harvey P. Dale, Jun 12 2013 *)

Formula

a(n) = A000040(n)-2n+1.

A166407 a(n) = floor(3*(A166406(n)/A005408(n))).

Original entry on oeis.org

-3, 1, 0, 3, -9, 3, 0, 6, 0, 3, 0, 9, -30, 1, 0, 9, 0, 6, 0, 12, 0, 3, 0, 15, -63, 6, 0, 12, 0, 9, 0, 6, 0, 3, 0, 21, 0, 2, 0, 15, -81, 9, 0, 18, 0, 6, 0, 24, 0, 0, 0, 15, 0, 9, 0, 24, 0, 6, 0, 30, -165, 6, 0, 15, 0, 15, 0, 6, 0, 9, 0, 30, 0, 0, 0, 21, 0, 12, 0, 30, 0, 3, 0, 33, -234, 6, 0, 6
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2009

Keywords

Comments

Conjecture: the quotient A166406(i)/A005408(i) has denominator 3 when i is one of the terms of A166101, and it is integral in other cases. If true, then floor in the formula is unnecessary.

Crossrefs

Cf. A166408.

Programs

  • Python
    from sympy import floor, jacobi_symbol as J
    def a(n):
        l=0
        m=0
        for i in range(1, 2*n + 2):
            if J(i, 2*n + 1)==-1: l+=i
            elif J(i, 2*n + 1)==1: m+=i
        return floor(3*((l - m)/(2*n + 1)))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 12 2017

A289786 p-INVERT of the odd positive integers (A005408), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 5, 20, 77, 291, 1098, 4149, 15689, 59332, 224369, 848447, 3208370, 12132345, 45878109, 173486772, 656035301, 2480778763, 9380993978, 35473960589, 134143768193, 507260826084, 1918192318185, 7253589435975, 27429241169378, 103722891648049, 392225150722037
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (1 + x)/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289786 *)
    LinearRecurrence[{5,-6,5,1},{1,5,20,77},30] (* Harvey P. Dale, May 06 2018 *)

Formula

G.f.: (-1 - x^2 - 2 x^3)/(-1 + 5 x - 6 x^2 + 5 x^3 + x^4).
a(n) = 5*a(n-1) - 6*a(n-2) + 5*a(n-3) + a(n-4).

A113170 Ascending descending base exponent transform of odd numbers A005408.

Original entry on oeis.org

1, 4, 33, 376, 5665, 115356, 3014209, 95722288, 3619661121, 161338248820, 8349617508961, 493959321484584, 33041900704133473, 2479933070973253516, 207343189445230918785, 19175058576632809926496, 1949302342535131018462849, 216707770770991401785821668
Offset: 1

Views

Author

Jonathan Vos Post, Jan 06 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The parity of this sequence cycles odd, even, odd, even, ... There is no nontrivial integer fixed point of the transform.

Examples

			a(2) = 4 because 1^3 + 3^1 = 1 + 3 = 4.
a(3) = 33 because 1^5 + 3^3 + 5^1 = 1 + 27 + 5 = 33.
a(4) = 406 because 1^7 + 3^5 + 5^3 + 7^1 = 1 + 243 + 125 + 7 = 376.
a(5) = 5665 because 1^9 + 3^7 + 5^5 + 7^3 + 9^1 = 5665.
a(6) = 115356 = 1^11 + 3^9 + 5^7 + 7^5 + 9^3 + 11^1.
a(7) = 3014209 = 1^13 + 3^11 + 5^9 + 7^7 + 9^5 + 11^3 + 13^1.
a(8) = 95722288 = 1^15 + 3^13 + 5^11 + 7^9 + 9^7 + 11^5 + 13^3 + 15^1.
a(9) = 3619661121 = 1^17 + 3^15 + 5^13 + 7^11 + 9^9 + 11^7 + 13^5 + 15^3 + 17^1.
a(10) = 161338248820 = 1^19 + 3^17 + 5^15 + 7^13 + 9^11 + 11^9 + 13^7 + 15^5 + 17^3 + 19^1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2 k + 1)^(2 n - 2 k + 1), {k, 1, n}], {n, 0, 10}] + 1 (* G. C. Greubel, May 18 2017 *)
  • PARI
    for(n=0,25, print1(1 + sum(k=1,n, (2*k+1)^(2*n-2*k+1)), ", ")) \\ G. C. Greubel, May 18 2017

Formula

a(1) = 1. For n>1: a(n) = Sum_{i=1..n} (2n+1)^(2n-i).

A169642 a(n) = A005408(n) * A022998(n).

Original entry on oeis.org

0, 3, 20, 21, 72, 55, 156, 105, 272, 171, 420, 253, 600, 351, 812, 465, 1056, 595, 1332, 741, 1640, 903, 1980, 1081, 2352, 1275, 2756, 1485, 3192, 1711, 3660, 1953, 4160, 2211, 4692, 2485, 5256, 2775, 5852, 3081, 6480, 3403, 7140, 3741, 7832, 4095, 8556
Offset: 0

Views

Author

Paul Curtz, Apr 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, -3 , 0, 1}, {0 , 3, 20, 21, 72, 55}, 47] (* Georg Fischer, Feb 22 2019 *)
  • PARI
    concat(0, Vec(-x*(3+20*x+12*x^2+12*x^3+x^4)/ ((x-1)^3*(1+x)^3) + O(x^50))) \\ Colin Barker, Dec 29 2016

Formula

From R. J. Mathar, Oct 09 2010: (Start)
a(n)= +3*a(n-2) -3*a(n-4) +a(n-6).
G.f.: -x*(3+20*x+12*x^2+12*x^3+x^4)/ ( (x-1)^3*(1+x)^3 ). (End)
From Colin Barker, Dec 29 2016: (Start)
a(n) = 4*n^2 + 2*n for n>0 and even.
a(n) = 2*n^2 + n for n odd. (End)
Sum_{n>=1} 1/a(n) = 1 + Pi/8 - 5*log(2)/4. - Amiram Eldar, Aug 12 2022

Extensions

Edited by N. J. A. Sloane, Apr 05 2010
More terms from R. J. Mathar, Oct 09 2010

A173283 A(x) satisfies A005408(x) = A(x)/A(x^2), A005408 = odd numbers.

Original entry on oeis.org

1, 3, 8, 16, 32, 56, 96, 152, 240, 360, 536, 768, 1096, 1520, 2096, 2824, 3792, 5000, 6568, 8496, 10960, 13960, 17728, 22264, 27896, 34624, 42872, 52640, 64504, 78464, 95248, 114856, 138256, 165448, 197640, 234832, 278592, 328920, 387744, 455064
Offset: 0

Views

Author

Gary W. Adamson, Feb 14 2010

Keywords

Comments

(1 + 3x + 5x^2 + 7x^3 + ...) = (1 + 3x + 8x^2 + 16x^3 + ...) / (1 + 3x^2 + 8x^4 + 16x^6 + ...).

Crossrefs

Programs

  • Maple
    A173283 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*(2*n-4*l+1),l=0..n/2) ; end if; end proc: seq(A173283(n),n=0..60) ; # R. J. Mathar, Apr 01 2010
  • Mathematica
    m = 40;
    A[_] = 1;
    Do[A[x_] = A[x^2] (1 + x)/(1 - x)^2 + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Feb 06 2020 *)

Formula

Given M = triangle A152204, odd numbers shifted down twice in every column > 0.
A173283 = lim_{n->inf} M^n, the left-shifted vector considered as a sequence.
a(n) = Sum_{t=0..n/2} (2*n - 4*t + 1)*a(t). - R. J. Mathar, Apr 01 2010

Extensions

More terms from R. J. Mathar, Apr 01 2010

A227569 Decimal expansion of maximal value of function F[a(n); b(n)] for pairs of complements a(n) and b(n) of natural numbers A000027, where a(n) = odd numbers (A005408) and b(n) = even numbers (A005843); see Comments for the definition of function F[a(n); b(n)].

Original entry on oeis.org

2, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2013

Keywords

Comments

Apart from the first digit, the same as A143280. The sum of the reciprocals of the double factorial numbers, Sum_{n>=1} 1/n!! = Sum_{n>=2} n!!/n!. - Robert G. Wilson v, Jun 27 2015
Definition of function F[a(n); b(n)]: Let a(n) and b(n) is pair of complements of natural numbers (A000027) with a(1) < a(2) < a(3) < ... and b(1) < b(2) < b(3) < ..., then F[a(n); b(n)] = F[a(n)] + F[b(n)]; where F[a(n)] = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... and F[b(n)] = 1/b(1) + 1/b(1)b(2) + 1/b(1)b(2)b(3) + ...
Value of function F[a(n); b(n)] is real number c = a + b, where a = real number whose Engel expansion is sequence a(n) and b = real number whose Engel expansion is sequence b(n). See A006784 for definition of Engel expansion.
Example for a(n) = odd numbers (A005408) and b(n) = even numbers (A005843): c = 2.059407... = a + b, where a = 1.410686... (A060196) and b = 0.648721... (A019774 - 1).
Example for a(n) = nonprime numbers (A018252) and b(n) = primes (A000040): c = 2.002747... = a + b, where a = 1.297516... and b = 0.705230... (A064648).
Conjecture: there are no pairs of complements a(n) and b(n) such that F[a(n); b(n)] = 2.
e - 1 <= F[a(n); b(n)] <= sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) - 1.
1.71828182... (A091131) <= F[a(n); b(n)] <= 2.05940740....

Examples

			2.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A000027, A005408, A005843, A091131 (e-1), A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); -1 + Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Apr 01 2019
    
  • Mathematica
    RealDigits[Sqrt[E] -1 + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[Sum[1/n!!, {n, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
  • PARI
    default(realprecision, 100); exp(1/2) - 1 + sqrt(exp(1)*Pi/2)*(1-erfc(1/sqrt(2))) \\ G. C. Greubel, Apr 01 2019
    
  • Sage
    numerical_approx(-1 + exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Apr 01 2019

A025115 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A005408 (odd natural numbers), t = A023533.

Original entry on oeis.org

0, 0, 1, 3, 5, 0, 0, 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 32, 36, 40, 44, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    A025115:= func< n | (&+[(2*k-1)*A023533(n+2-k): k in [1..Floor((n+1)/2)]]) >;
    [A025115(n): n in [1..100]]; // G. C. Greubel, Sep 13 2022
    
  • Mathematica
    b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}];
    A025115[n_]:= A025115[n]= Sum[(2*(n-j+2)-1)*b[j], {j, Floor[(n+4)/2], n+1}];
    Table[A025115[n], {n,100}] (* G. C. Greubel, Sep 13 2022 *)
  • SageMath
    @CachedFunction
    def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..10))
    @CachedFunction
    def A025115(n): return sum((2*(n-j+2)-1)*b(j) for j in (((n+4)//2)..n+1))
    [A025115(n) for n in (1..100)] # G. C. Greubel, Sep 13 2022
Showing 1-10 of 1269 results. Next