A190407 Decimal expansion of Sum_{k>=1} (1/2)^A058331(k); based on a diagonal of the natural number array, A000027.
1, 2, 6, 9, 5, 5, 0, 3, 2, 4, 6, 5, 0, 4, 8, 5, 7, 8, 4, 1, 6, 2, 5, 0, 5, 4, 3, 6, 3, 5, 7, 2, 5, 6, 7, 8, 8, 0, 6, 9, 6, 2, 1, 6, 8, 1, 9, 0, 1, 4, 6, 8, 0, 0, 2, 3, 1, 5, 0, 6, 1, 7, 8, 4, 9, 2, 5, 0, 9, 9, 2, 2, 7, 6, 2, 2, 7, 3, 0, 7, 5, 3, 8, 2, 1, 6, 5, 1, 3, 8, 3, 2, 3, 0, 9, 6, 1, 4, 3, 1, 3, 9, 1, 4, 3, 1, 4, 5, 8, 3, 2, 5, 4, 2, 1, 3, 0, 3, 3, 2
Offset: 0
Examples
0.12695503246504857842...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
(* See also A190404 *) RealDigits[(EllipticTheta[3, 0, 1/4]-1)/4, 10, 120] // First (* Jean-François Alcover, Feb 13 2013 *)
-
PARI
th3(x)=1 + 2*suminf(n=1,x^n^2) (th3(1/4)-1)/4 \\ Charles R Greathouse IV, Jun 06 2016
-
Sage
def A190407(b): # Generate the constant with b bits of precision return N(sum([(1/2)^(2*k^2+1) for k in range(1,b)]),b) A190407(415) # Danny Rorabaugh, Mar 26 2015
Formula
Equals Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).
Comments