cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 235 results. Next

A245508 Smallest double square (cf. A001105) greater than n-th prime.

Original entry on oeis.org

2, 8, 8, 8, 18, 18, 18, 32, 32, 32, 32, 50, 50, 50, 50, 72, 72, 72, 72, 72, 98, 98, 98, 98, 98, 128, 128, 128, 128, 128, 128, 162, 162, 162, 162, 162, 162, 200, 200, 200, 200, 200, 200, 200, 200, 200, 242, 242, 242, 242, 242, 242, 242, 288, 288, 288, 288
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2014

Keywords

Comments

For n > 2: prime(n) < a(n) < 2*prime(n) and a(n) = A245499(A000040(n),2).

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a245508 n = genericIndex a245508_list (n-1)
    a245508_list = f a000040_list a001105_list where
       f ps'@ (p:ps) xs'@(x:xs) = if p <= x then x : f ps xs' else f ps' xs
    
  • Mathematica
    Module[{nn=60,ds},ds=2 Range[0,Ceiling[Sqrt[Prime[nn]]]]^2;Join[ {2},Table[ SelectFirst[ds,#>Prime[n]&],{n,2,nn}]]] (* Harvey P. Dale, Jan 07 2020 *)
  • PARI
    a(n) = my(k=prime(n)+(n!=1)); while (! issquare(k/2), k+=2); k; \\ Michel Marcus, Jan 24 2022

A253724 Numbers c(n) whose squares are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105).

Original entry on oeis.org

504, 8721, 65472, 312375, 1119528, 3293829, 8388096, 19131147, 39999000, 77947353, 143325504, 250991871, 421651272, 683434125, 1073737728, 1641349779, 2448874296, 3575480097, 5119992000, 7204344903, 9977420904, 13619289621, 18345871872, 24414046875
Offset: 2

Views

Author

Vladimir Pletser, Jan 10 2015

Keywords

Comments

Numbers c(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for M(n) being twice a squared integer (A001105) and b(n)=(A002593).
If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting at b^3 and equaling to a squared integer c^2. For n>=1, M(n)= 2n^2 (A001105), b(n) = M(M-1)/2 = n^2(2n^2 - 1) (A002593), and c(n)= sqrt(M/2) (M(M^2-1)/2)= n^3(4n^4 - 1) (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=2, M(n)=8, b(n)=28, c(n)=504.
See "File Triplets (M,b,c) for M=2n^2" link.
		

Crossrefs

Programs

  • Magma
    [n^3*(4*n^4 - 1): n in [2..30]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 2 to 50000 do a:= n^3*(4*n^4 - 1): print (a); end do:
  • Mathematica
    f[n_] := n^3 (4 n^4 - 1); Rest@Array[f, 32] (* Michael De Vlieger, Jan 28 2015 *)
  • PARI
    Vec(-3*x^2*(x^7-8*x^6+27*x^5-216*x^4-1521*x^3-3272*x^2-1563*x-168)/(x-1)^8 + O(x^100)) \\ Colin Barker, Jan 14 2015
    

Formula

a(n) = n^3(4n^4 - 1).
G.f.: -3*x^2*(x^7-8*x^6+27*x^5-216*x^4-1521*x^3-3272*x^2-1563*x-168) / (x-1)^8. - Colin Barker, Jan 14 2015

A253725 Integer squares c^2 that are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105).

Original entry on oeis.org

254016, 76055841, 4286582784, 97578140625, 1253342942784, 10849309481241, 70360154505216, 366000785535609, 1599920001000000, 6075789839706609, 20542200096854016, 62996919308080641, 177789795179217984, 467082203214515625, 1152912708530601984
Offset: 2

Views

Author

Vladimir Pletser, Jan 10 2015

Keywords

Comments

Numbers a(n)=c^2 such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers where M(n) is twice a squared integer (A001105) and b(n)=(A002593).
If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting at b^3 and equaling a squared integer c^2. For n>=1, M(n)= 2n^2 (A001105), b(n) = M(M-1)/2 = n^2(2n^2 - 1) (A002593), c(n)= sqrt(M/2) (M(M^2-1)/2)= n^3(4n^4 - 1) (A253724) and a(n)=c(n)^2 (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=2, M(n)=8, b(n)=28, c(n)=504, a(n)=c^2=254016.
See "File Triplets (M,b,c) for M=2n^2" link.
		

Crossrefs

Programs

  • Magma
    [(n^3*(4*n^4-1))^2: n in [2..20]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 2 to 50000 do a:=(n^3*(4*n^4 - 1))^2: print (a); end do:
  • Mathematica
    f[n_] := (n^3 (4 n^4 - 1))^2; Rest[f /@ Range@16] (* Michael De Vlieger, Jan 28 2015 *)
    LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{254016,76055841,4286582784,97578140625,1253342942784,10849309481241,70360154505216,366000785535609,1599920001000000,6075789839706609,20542200096854016,62996919308080641,177789795179217984,467082203214515625,1152912708530601984},20] (* Harvey P. Dale, Feb 18 2023 *)

Formula

a(n) = (n^3(4n^4 - 1))^2.
G.f.: -9*x^2*(x^14 -15*x^13 +106*x^12 +27754*x^11 +8028759*x^10 +352487303*x^9 +4572193580*x^8 +22833696108*x^7 +49725383807*x^6 +49725372367*x^5 +22833705546*x^4 +4572187210*x^3 +352490761*x^2 +8027289*x +28224) / (x -1)^15. - Colin Barker, Jan 14 2015

A000290 The squares: a(n) = n^2.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Keywords

Comments

To test if a number is a square, see Cohen, p. 40. - N. J. A. Sloane, Jun 19 2011
Zero followed by partial sums of A005408 (odd numbers). - Jeremy Gardiner, Aug 13 2002
Begin with n, add the next number, subtract the previous number and so on ending with subtracting a 1: a(n) = n + (n+1) - (n-1) + (n+2) - (n-2) + (n+3) - (n-3) + ... + (2n-1) - 1 = n^2. - Amarnath Murthy, Mar 24 2004
Sum of two consecutive triangular numbers A000217. - Lekraj Beedassy, May 14 2004
Numbers with an odd number of divisors: {d(n^2) = A048691(n); for the first occurrence of 2n + 1 divisors, see A071571(n)}. - Lekraj Beedassy, Jun 30 2004
See also A000037.
First sequence ever computed by electronic computer, on EDSAC, May 06 1949 (see Renwick link). - Russ Cox, Apr 20 2006
Numbers k such that the imaginary quadratic field Q(sqrt(-k)) has four units. - Marc LeBrun, Apr 12 2006
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A006881(k)^(n-1)); a(n) = A000005(A000400(n-1)) = A000005(A011557(n-1)) = A000005(A001023(n-1)) = A000005(A001024(n-1)). - Reinhard Zumkeller, Mar 04 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
Numbers a such that a^1/2 + b^1/2 = c^1/2 and a^2 + b = c. - Cino Hilliard, Feb 07 2008 (this comment needs clarification, Joerg Arndt, Sep 12 2013)
Numbers k such that the geometric mean of the divisors of k is an integer. - Ctibor O. Zizka, Jun 26 2008
Equals row sums of triangle A143470. Example: 36 = sum of row 6 terms: (23 + 7 + 3 + 1 + 1 + 1). - Gary W. Adamson, Aug 17 2008
Equals row sums of triangles A143595 and A056944. - Gary W. Adamson, Aug 26 2008
Number of divisors of 6^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Denominators of Lyman spectrum of hydrogen atom. Numerators are A005563. A000290-A005563 = A000012. - Paul Curtz, Nov 06 2008
a(n) is the number of all partitions of the sum 2^2 + 2^2 + ... + 2^2, (n-1) times, into powers of 2. - Valentin Bakoev, Mar 03 2009
a(n) is the maximal number of squares that can be 'on' in an n X n board so that all the squares turn 'off' after applying the operation: in any 2 X 2 sub-board, a square turns from 'on' to 'off' if the other three are off. - Srikanth K S, Jun 25 2009
Zero together with the numbers k such that 2 is the number of perfect partitions of k. - Juri-Stepan Gerasimov, Sep 26 2009
Totally multiplicative sequence with a(p) = p^2 for prime p. - Jaroslav Krizek, Nov 01 2009
Satisfies A(x)/A(x^2), A(x) = A173277: (1, 4, 13, 32, 74, ...). - Gary W. Adamson, Feb 14 2010
Positive members are the integers with an odd number of odd divisors and an even number of even divisors. See also A120349, A120359, A181792, A181793, A181795. - Matthew Vandermast, Nov 14 2010
Besides the first term, this sequence is the denominator of Pi^2/6 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... . - Mohammad K. Azarian, Nov 01 2011
Partial sums give A000330. - Omar E. Pol, Jan 12 2013
Drmota, Mauduit, and Rivat proved that the Thue-Morse sequence along the squares is normal; see A228039. - Jonathan Sondow, Sep 03 2013
a(n) can be decomposed into the sum of the four numbers [binomial(n, 1) + binomial(n, 2) + binomial(n-1, 1) + binomial(n-1, 2)] which form a "square" in Pascal's Triangle A007318, or the sum of the two numbers [binomial(n, 2) + binomial(n+1, 2)], or the difference of the two numbers [binomial(n+2, 3) - binomial(n, 3)]. - John Molokach, Sep 26 2013
In terms of triangular tiling, the number of equilateral triangles with side length 1 inside an equilateral triangle with side length n. - K. G. Stier, Oct 30 2013
Number of positive roots in the root systems of type B_n and C_n (when n > 1). - Tom Edgar, Nov 05 2013
Squares of squares (fourth powers) are also called biquadratic numbers: A000583. - M. F. Hasler, Dec 29 2013
For n > 0, a(n) is the largest integer k such that k^2 + n is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n is a multiple of k + n is given by k = n^(2*m). - Derek Orr, Sep 03 2014
For n > 0, a(n) is the number of compositions of n + 5 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
a(n), for n >= 3, is also the number of all connected subtrees of a cycle graph, having n vertices. - Viktar Karatchenia, Mar 02 2016
On every sequence of natural continuous numbers with an even number of elements, the summatory of the second half of the sequence minus the summatory of the first half of the sequence is always a square. Example: Sequence from 61 to 70 has an even number of elements (10). Then 61 + 62 + 63 + 64 + 65 = 315; 66 + 67 + 68 + 69 + 70 = 340; 340 - 315 = 25. (n/2)^2 for n = number of elements. - César Aguilera, Jun 20 2016
On every sequence of natural continuous numbers from n^2 to (n+1)^2, the sum of the differences of pairs of elements of the two halves in every combination possible is always (n+1)^2. - César Aguilera, Jun 24 2016
Suppose two circles with radius 1 are tangent to each other as well as to a line not passing through the point of tangency. Create a third circle tangent to both circles as well as the line. If this process is continued, a(n) for n > 0 is the reciprocals of the radii of the circles, beginning with the largest circle. - Melvin Peralta, Aug 18 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Numerators of the solution to the generalization of the Feynman triangle problem, with an offset of 2. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The denominators of the ratio of the areas is given by A002061. [Cook & Wood, 2004] - Joe Marasco, Feb 20 2017
Equals row sums of triangle A004737, n >= 1. - Martin Michael Musatov, Nov 07 2017
Right-hand side of the binomial coefficient identity Sum_{k = 0..n} (-1)^(n+k+1)*binomial(n,k)*binomial(n + k,k)*(n - k) = n^2. - Peter Bala, Jan 12 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)-1} such that |A|=|B|=k and A+B contains {0,1,2,...,a(n)-1}} = n. - Michael Chu, Mar 09 2022
Number of 3-permutations of n elements avoiding the patterns 132, 213, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Number of intercalates in cyclic Latin squares of order 2n (cyclic Latin squares of odd order do not have intercalates). - Eduard I. Vatutin, Feb 15 2024
a(n) is the number of ternary strings of length n with at most one 0, exactly one 1, and no restriction on the number of 2's. For example, a(3)=9, consisting of the 6 permutations of the string 102 and the 3 permutations of the string 122. - Enrique Navarrete, Mar 12 2025

Examples

			For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - _Bruno Berselli_, May 04 2010
G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ...
a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - _Viktar Karatchenia_, Mar 02 2016
		

References

  • G. L. Alexanderson et al., The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, "December 1967 Problem B4(a)", pp. 8(157) MAA Washington DC 1985.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Chapter XV, pp. 135-167.
  • R. P. Burn & A. Chetwynd, A Cascade Of Numbers, "The prison door problem" Problem 4 pp. 5-7; 79-80 Arnold London 1996.
  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, p. 40.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 31, 36, 38, 63.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), p. 6.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments, Chapter 6 pp. 71-2, W. H. Freeman NY 1988.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology and §8.6 Figurate Numbers, pp. 264, 290-291.
  • Alfred S. Posamentier, The Art of Problem Solving, Section 2.4 "The Long Cell Block" pp. 10-1; 12; 156-7 Corwin Press Thousand Oaks CA 1996.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 35, 52-53, 129-132, 244.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. K. Strayer, Elementary Number Theory, Exercise Set 3.3 Problems 32, 33, p. 88, PWS Publishing Co. Boston MA 1996.
  • C. W. Trigg, Mathematical Quickies, "The Lucky Prisoners" Problem 141 pp. 40, 141, Dover NY 1985.
  • R. Vakil, A Mathematical Mosaic, "The Painted Lockers" pp. 127;134 Brendan Kelly Burlington Ontario 1996.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.

Crossrefs

Cf. A092205, A128200, A005408, A128201, A002522, A005563, A008865, A059100, A143051, A143470, A143595, A056944, A001157 (inverse Möbius transform), A001788 (binomial transform), A228039, A001105, A004159, A159918, A173277, A095794, A162395, A186646 (Pisano periods), A028338 (2nd diagonal).
A row or column of A132191.
This sequence is related to partitions of 2^n into powers of 2, as it is shown in A002577. So A002577 connects the squares and A000447. - Valentin Bakoev, Mar 03 2009
Boustrophedon transforms: A000697, A000745.
Cf. A342819.
Cf. A013661.

Programs

Formula

G.f.: x*(1 + x) / (1 - x)^3.
E.g.f.: exp(x)*(x + x^2).
Dirichlet g.f.: zeta(s-2).
a(n) = a(-n).
Multiplicative with a(p^e) = p^(2*e). - David W. Wilson, Aug 01 2001
Sum of all matrix elements M(i, j) = 2*i/(i+j) (i, j = 1..n). a(n) = Sum_{i = 1..n} Sum_{j = 1..n} 2*i/(i + j). - Alexander Adamchuk, Oct 24 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 2. - Miklos Kristof, Mar 09 2005
From Pierre CAMI, Oct 22 2006: (Start)
a(n) is the sum of the odd numbers from 1 to 2*n - 1.
a(0) = 0, a(1) = 1, then a(n) = a(n-1) + 2*n - 1. (End)
For n > 0: a(n) = A130064(n)*A130065(n). - Reinhard Zumkeller, May 05 2007
a(n) = Sum_{k = 1..n} A002024(n, k). - Reinhard Zumkeller, Jun 24 2007
Left edge of the triangle in A132111: a(n) = A132111(n, 0). - Reinhard Zumkeller, Aug 10 2007
Binomial transform of [1, 3, 2, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = binomial(n+1, 2) + binomial(n, 2).
This sequence could be derived from the following general formula (cf. A001286, A000330): n*(n+1)*...*(n+k)*(n + (n+1) + ... + (n+k))/((k+2)!*(k+1)/2) at k = 0. Indeed, using the formula for the sum of the arithmetic progression (n + (n+1) + ... + (n+k)) = (2*n + k)*(k + 1)/2 the general formula could be rewritten as: n*(n+1)*...*(n+k)*(2*n+k)/(k+2)! so for k = 0 above general formula degenerates to n*(2*n + 0)/(0 + 2) = n^2. - Alexander R. Povolotsky, May 18 2008
From a(4) recurrence formula a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 4, a(3) = 9. - Artur Jasinski, Oct 21 2008
The recurrence a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) is satisfied by all k-gonal sequences from a(3), with a(0) = 0, a(1) = 1, a(2) = k. - Jaume Oliver Lafont, Nov 18 2008
a(n) = floor(n*(n+1)*(Sum_{i = 1..n} 1/(n*(n+1)))). - Ctibor O. Zizka, Mar 07 2009
Product_{i >= 2} 1 - 2/a(i) = -sin(A063448)/A063448. - R. J. Mathar, Mar 12 2009
a(n) = A002378(n-1) + n. - Jaroslav Krizek, Jun 14 2009
a(n) = n*A005408(n-1) - (Sum_{i = 1..n-2} A005408(i)) - (n-1) = n*A005408(n-1) - a(n-1) - (n-1). - Bruno Berselli, May 04 2010
a(n) == 1 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = a(n-1) + a(n-2) - a(n-3) + 4, n > 2. - Gary Detlefs, Sep 07 2010
a(n+1) = Integral_{x >= 0} exp(-x)/( (Pn(x)*exp(-x)*Ei(x) - Qn(x))^2 +(Pi*exp(-x)*Pn(x))^2 ), with Pn the Laguerre polynomial of order n and Qn the secondary Laguerre polynomial defined by Qn(x) = Integral_{t >= 0} (Pn(x) - Pn(t))*exp(-t)/(x-t). - Groux Roland, Dec 08 2010
Euler transform of length-2 sequence [4, -1]. - Michael Somos, Feb 12 2011
A162395(n) = -(-1)^n * a(n). - Michael Somos, Mar 19 2011
a(n) = A004201(A000217(n)); A007606(a(n)) = A000384(n); A007607(a(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
Sum_{n >= 1} 1/a(n)^k = (2*Pi)^k*B_k/(2*k!) = zeta(2*k) with Bernoulli numbers B_k = -1, 1/6, 1/30, 1/42, ... for k >= 0. See A019673, A195055/10 etc. [Jolley eq 319].
Sum_{n>=1} (-1)^(n+1)/a(n)^k = 2^(k-1)*Pi^k*(1-1/2^(k-1))*B_k/k! [Jolley eq 320] with B_k as above.
A007968(a(n)) = 0. - Reinhard Zumkeller, Jun 18 2011
A071974(a(n)) = n; A071975(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2011
a(n) = A199332(2*n - 1, n). - Reinhard Zumkeller, Nov 23 2011
For n >= 1, a(n) = Sum_{d|n} phi(d)*psi(d), where phi is A000010 and psi is A001615. - Enrique Pérez Herrero, Feb 29 2012
a(n) = A000217(n^2) - A000217(n^2 - 1), for n > 0. - Ivan N. Ianakiev, May 30 2012
a(n) = (A000217(n) + A000326(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A162610(n, n) = A209297(n, n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(A000217(n)) = Sum_{i = 1..n} Sum_{j = 1..n} i*j, for n > 0. - Ivan N. Ianakiev, Apr 20 2013
a(n) = A133280(A000217(n)). - Ivan N. Ianakiev, Aug 13 2013
a(2*a(n)+2*n+1) = a(2*a(n)+2*n) + a(2*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+1) = Sum_{t1+2*t2+...+n*tn = n} (-1)^(n+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*4^(t1)*7^(t2)*8^(t3+...+tn). - Mircea Merca, Feb 27 2014
a(n) = floor(1/(1-cos(1/n)))/2 = floor(1/(1-n*sin(1/n)))/6, n > 0. - Clark Kimberling, Oct 08 2014
a(n) = ceiling(Sum_{k >= 1} log(k)/k^(1+1/n)) = -Zeta'[1+1/n]. Thus any exponent greater than 1 applied to k yields convergence. The fractional portion declines from A073002 = 0.93754... at n = 1 and converges slowly to 0.9271841545163232... for large n. - Richard R. Forberg, Dec 24 2014
a(n) = Sum_{j = 1..n} Sum_{i = 1..n} ceiling((i + j - n + 1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Product_{j = 1..n-1} 2 - 2*cos(2*j*Pi/n). - Michel Marcus, Jul 24 2015
From Ilya Gutkovskiy, Jun 21 2016: (Start)
Product_{n >= 1} (1 + 1/a(n)) = sinh(Pi)/Pi = A156648.
Sum_{n >= 0} 1/a(n!) = BesselI(0, 2) = A070910. (End)
a(n) = A028338(n, n-1), n >= 1 (second diagonal). - Wolfdieter Lang, Jul 21 2017
For n >= 1, a(n) = Sum_{d|n} sigma_2(d)*mu(n/d) = Sum_{d|n} A001157(d)*A008683(n/d). - Ridouane Oudra, Apr 15 2021
a(n) = Sum_{i = 1..2*n-1} ceiling(n - i/2). - Stefano Spezia, Apr 16 2021
From Richard L. Ollerton, May 09 2021: (Start) For n >= 1,
a(n) = Sum_{k=1..n} psi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} psi(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = (A005449(n) + A000326(n))/3. - Klaus Purath, May 13 2021
Let T(n) = A000217(n), then a(T(n)) + a(T(n+1)) = T(a(n+1)). - Charlie Marion, Jun 27 2022
a(n) = Sum_{k=1..n} sigma_1(k) + Sum_{i=1..n} (n mod i). - Vadim Kataev, Dec 07 2022
a(n^2) + a(n^2+1) + ... + a(n^2+n) + 4*A000537(n) = a(n^2+n+1) + ... + a(n^2+2n). In general, if P(k,n) = the n-th k-gonal number, then P(2k,n^2) + P(2k,n^2+1) + ... + P(2k,n^2+n) + 4*(k-1)*A000537(n) = P(2k,n^2+n+1) + ... + P(2k,n^2+2n). - Charlie Marion, Apr 26 2024
Sum_{n>=1} 1/a(n) = A013661. - Alois P. Heinz, Oct 19 2024
a(n) = 1 + 3^3*((n-1)/(n+1))^2 + 5^3*((n-1)*(n-2)/((n+1)*(n+2)))^2 + 7^3*((n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)))^2 + ... for n >= 1. - Peter Bala, Dec 09 2024

Extensions

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010

A011782 Coefficients of expansion of (1-x)/(1-2*x) in powers of x.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Apart from initial term, same as A000079 (powers of 2).
Number of compositions (ordered partitions) of n. - Toby Bartels, Aug 27 2003
Number of ways of putting n unlabeled items into (any number of) labeled boxes where every box contains at least one item. Also "unimodal permutations of n items", i.e., those which rise then fall. (E.g., for three items: ABC, ACB, BCA and CBA are unimodal.) - Henry Bottomley, Jan 17 2001
Number of permutations in S_n avoiding the patterns 213 and 312. - Tuwani Albert Tshifhumulo, Apr 20 2001. More generally (see Simion and Schmidt), the number of permutations in S_n avoiding (i) the 123 and 132 patterns; (ii) the 123 and 213 patterns; (iii) the 132 and 213 patterns; (iv) the 132 and 231 patterns; (v) the 132 and 312 patterns; (vi) the 213 and 231 patterns; (vii) the 213 and 312 patterns; (viii) the 231 and 312 patterns; (ix) the 231 and 321 patterns; (x) the 312 and 321 patterns.
a(n+2) is the number of distinct Boolean functions of n variables under action of symmetric group.
Number of unlabeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Image of the central binomial coefficients A000984 under the Riordan array ((1-x), x*(1-x)). - Paul Barry, Mar 18 2005
Binomial transform of (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...); inverse binomial transform of A007051. - Philippe Deléham, Jul 04 2005
Also, number of rationals in [0, 1) whose binary expansions terminate after n bits. - Brad Chalfan, May 29 2006
Equals row sums of triangle A144157. - Gary W. Adamson, Sep 12 2008
Prepend A089067 with a 1, getting (1, 1, 3, 5, 13, 23, 51, ...) as polcoeff A(x); then (1, 1, 2, 4, 8, 16, ...) = A(x)/A(x^2). - Gary W. Adamson, Feb 18 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 2, 8, 32 and 128, lead to this sequence. For the corner squares these vectors lead to the companion sequence A094373. - Johannes W. Meijer, Aug 15 2010
From Paul Curtz, Jul 20 2011: (Start)
Array T(m,n) = 2*T(m,n-1) + T(m-1,n):
1, 1, 2, 4, 8, 16, ... = a(n)
1, 3, 8, 20, 48, 112, ... = A001792,
1, 5, 18, 56, 160, 432, ... = A001793,
1, 7, 32, 120, 400, 1232, ... = A001794,
1, 9, 50, 220, 840, 2912, ... = A006974, followed with A006975, A006976, gives nonzero coefficients of Chebyshev polynomials of first kind A039991 =
1,
1, 0,
2, 0, -1,
4, 0, -3, 0,
8, 0, -8, 0, 1.
T(m,n) third vertical: 2*n^2, n positive (A001105).
Fourth vertical appears in Janet table even rows, last vertical (A168342 array, A138509, rank 3, 13, = A166911)). (End)
A131577(n) and differences are:
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16, = a(n),
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16.
Number of 2-color necklaces of length 2n equal to their complemented reversal. For length 2n+1, the number is 0. - David W. Wilson, Jan 01 2012
Edges and also central terms of triangle A198069: a(0) = A198069(0,0) and for n > 0: a(n) = A198069(n,0) = A198069(n,2^n) = A198069(n,2^(n-1)). - Reinhard Zumkeller, May 26 2013
These could be called the composition numbers (see the second comment) since the equivalent sequence for partitions is A000041, the partition numbers. - Omar E. Pol, Aug 28 2013
Number of self conjugate integer partitions with exactly n parts for n>=1. - David Christopher, Aug 18 2014
The sequence is the INVERT transform of (1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...). - Gary W. Adamson, Jul 16 2015
Number of threshold graphs on n nodes [Hougardy]. - Falk Hüffner, Dec 03 2015
Number of ternary words of length n in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
a(n) is the number of words of length n over an alphabet of two letters, of which one letter appears an even number of times (the empty word of length 0 is included). See the analogous odd number case in A131577, and the Balakrishnan reference in A006516 (the 4-letter odd case), pp. 68-69, problems 2.66, 2.67 and 2.68. - Wolfdieter Lang, Jul 17 2017
Number of D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are D-equivalent iff the positions of pattern D are identical in these paths. - Sergey Kirgizov, Apr 08 2018
Number of color patterns (set partitions) for an oriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if we permute the colors. For a(4)=8, the 4 achiral patterns are AAAA, AABB, ABAB, and ABBA; the 4 chiral patterns are the 2 pairs AAAB-ABBB and AABA-ABAA. - Robert A. Russell, Oct 30 2018
The determinant of the symmetric n X n matrix M defined by M(i,j) = (-1)^max(i,j) for 1 <= i,j <= n is equal to a(n) * (-1)^(n*(n+1)/2). - Bernard Schott, Dec 29 2018
For n>=1, a(n) is the number of permutations of length n whose cyclic representations can be written in such a way that when the cycle parentheses are removed what remains is 1 through n in natural order. For example, a(4)=8 since there are exactly 8 permutations of this form, namely, (1 2 3 4), (1)(2 3 4), (1 2)(3 4), (1 2 3)(4), (1)(2)(3 4), (1)(2 3)(4), (1 2)(3)(4), and (1)(2)(3)(4). Our result follows readily by conditioning on k, the number of parentheses pairs of the form ")(" in the cyclic representation. Since there are C(n-1,k) ways to insert these in the cyclic representation and since k runs from 0 to n-1, we obtain a(n) = Sum_{k=0..n-1} C(n-1,k) = 2^(n-1). - Dennis P. Walsh, May 23 2020
Maximum number of preimages that a permutation of length n + 1 can have under the consecutive-231-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
a(n) is the number of occurrences of the empty set {} in the von Neumann ordinals from 0 up to n. Each ordinal k is defined as the set of all smaller ordinals: 0 = {}, 1 = {0}, 2 = {0,1}, etc. Since {} is the foundational element of all ordinals, the total number of times it appears grows as powers of 2. - Kyle Wyonch, Mar 30 2025

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
    ( -1   1  -1)
det (  1   1   1)  = 4
    ( -1  -1  -1)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
  • Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.

Crossrefs

Sequences with g.f.'s of the form ((1-x)/(1-2*x))^k: this sequence (k=1), A045623 (k=2), A058396 (k=3), A062109 (k=4), A169792 (k=5), A169793 (k=6), A169794 (k=7), A169795 (k=8), A169796 (k=9), A169797 (k=10).
Cf. A005418 (unoriented), A122746(n-3) (chiral), A016116 (achiral).
Row sums of triangle A100257.
A row of A160232.
Row 2 of A278984.

Programs

  • Haskell
    a011782 n = a011782_list !! n
    a011782_list = 1 : scanl1 (+) a011782_list
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Magma
    [Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
    with(PolynomialTools):  A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
  • Mathematica
    f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
    CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
    Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
    Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n-1))};
    
  • PARI
    Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
    
  • Python
    def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
  • Sage
    [sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
    

Formula

a(0) = 1, a(n) = 2^(n-1).
G.f.: (1 - x) / (1 - 2*x) = 1 / (1 - x / (1 - x)). - Michael Somos, Apr 18 2012
E.g.f.: cosh(z)*exp(z) = (exp(2*z) + 1)/2.
a(0) = 1 and for n>0, a(n) = sum of all previous terms.
a(n) = Sum_{k=0..n} binomial(n, 2*k). - Paul Barry, Feb 25 2003
a(n) = Sum_{k=0..n} binomial(n,k)*(1+(-1)^k)/2. - Paul Barry, May 27 2003
a(n) = floor((1+2^n)/2). - Toby Bartels (toby+sloane(AT)math.ucr.edu), Aug 27 2003
G.f.: Sum_{i>=0} x^i/(1-x)^i. - Jon Perry, Jul 10 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k+1, n-k)*binomial(2*k, k). - Paul Barry, Mar 18 2005
a(n) = Sum_{k=0..floor(n/2)} A055830(n-k, k). - Philippe Deléham, Oct 22 2006
a(n) = Sum_{k=0..n} A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: 1/(1 - (x + x^2 + x^3 + ...)). - Geoffrey Critzer, Aug 30 2008
a(n) = A000079(n) - A131577(n).
a(n) = A173921(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = Sum_{k=2^n..2^(n+1)-1} A093873(k)/A093875(k), sums of rows of the full tree of Kepler's harmonic fractions. - Reinhard Zumkeller, Oct 17 2010
E.g.f.: (exp(2*x)+1)/2 = (G(0) + 1)/2; G(k) = 1 + 2*x/(2*k+1 - x*(2*k+1)/(x + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
A051049(n) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
A008619(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
INVERT transform is A122367. MOBIUS transform is A123707. EULER transform of A059966. PSUM transform is A000079. PSUMSIGN transform is A078008. BINOMIAL transform is A007051. REVERT transform is A105523. A002866(n) = a(n)*n!. - Michael Somos, Apr 18 2012
G.f.: U(0), where U(k) = 1 + x*(k+3) - x*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = A000041(n) + A056823(n). - Omar E. Pol, Aug 31 2013
E.g.f.: E(0), where E(k) = 1 + x/( 2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2013
G.f.: 1 + x/(1 + x)*( 1 + 3*x/(1 + 3*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 7*x/(1 + 7*x)*( 1 + ... )))). - Peter Bala, May 27 2017
a(n) = Sum_{k=0..2} stirling2(n, k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=2. - Robert A. Russell, Apr 25 2018
a(n) = A053120(n, n), n >= 0, (main diagonal of triangle of Chebyshev's T polynomials). - Wolfdieter Lang, Nov 26 2019

Extensions

Additional comments from Emeric Deutsch, May 14 2001
Typo corrected by Philippe Deléham, Oct 25 2008

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A002522 a(n) = n^2 + 1.

Original entry on oeis.org

1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501
Offset: 0

Views

Author

Keywords

Comments

An n X n nonnegative matrix A is primitive (see A070322) iff every element of A^k is > 0 for some power k. If A is primitive then the power which should have all positive entries is <= n^2 - 2n + 2 (Wielandt).
a(n) = Phi_4(n), where Phi_k is the k-th cyclotomic polynomial.
As the positive solution to x=2n+1/x is x=n+sqrt(a(n)), the continued fraction expansion of sqrt(a(n)) is {n; 2n, 2n, 2n, 2n, ...}. - Benoit Cloitre, Dec 07 2001
a(n) is one less than the arithmetic mean of its neighbors: a(n) = (a(n-1) + a(n+1))/2 - 1. E.g., 2 = (1+5)/2 - 1, 5 = (2+10)/2 - 1. - Amarnath Murthy, Jul 29 2003
Equivalently, the continued fraction expansion of sqrt(a(n)) is (n;2n,2n,2n,...). - Franz Vrabec, Jan 23 2006
Number of {12,1*2*,21}-avoiding signed permutations in the hyperoctahedral group.
The number of squares of side 1 which can be drawn without lifting the pencil, starting at one corner of an n X n grid and never visiting an edge twice is n^2-2n+2. - Sébastien Dumortier, Jun 16 2005
Also, numbers m such that m^3 - m^2 is a square, (n*(1 + n^2))^2. - Zak Seidov
1 + 2/2 + 2/5 + 2/10 + ... = Pi*coth Pi [Jolley], see A113319. - Gary W. Adamson, Dec 21 2006
For n >= 1, a(n-1) is the minimal number of choices from an n-set such that at least one particular element has been chosen at least n times or each of the n elements has been chosen at least once. Some games define "matches" this way; e.g., in the classic Parker Brothers, now Hasbro, board game Risk, a(2)=5 is the number of cards of three available types (suits) required to guarantee at least one match of three different types or of three of the same type (ignoring any jokers or wildcards). - Rick L. Shepherd, Nov 18 2007
Positive X values of solutions to the equation X^3 + (X - 1)^2 + X - 2 = Y^2. To prove that X = n^2 + 1: Y^2 = X^3 + (X - 1)^2 + X - 2 = X^3 + X^2 - X - 1 = (X - 1)(X^2 + 2X + 1) = (X - 1)*(X + 1)^2 it means: (X - 1) must be a perfect square, so X = n^2 + 1 and Y = n(n^2 + 2). - Mohamed Bouhamida, Nov 29 2007
{a(k): 0 <= k < 4} = divisors of 10. - Reinhard Zumkeller, Jun 17 2009
Appears in A054413 and A086902 in relation to sequences related to the numerators and denominators of continued fractions convergents to sqrt((2*n)^2/4 + 1), n=1, 2, 3, ... . - Johannes W. Meijer, Jun 12 2010
For n > 0, continued fraction [n,n] = n/a(n); e.g., [5,5] = 5/26. - Gary W. Adamson, Jul 15 2010
The only real solution of the form f(x) = A*x^p with negative p which satisfies f^(m)(x) = f^[-1](x), x >= 0, m >= 1, with f^(m) the m-th derivative and f^[-1] the compositional inverse of f, is obtained for m=2*n, p=p(n)= -(sqrt(a(n))-n) and A=A(n)=(fallfac(p(n),2*n))^(-p(n)/(p(n)+1)), with fallfac(x,k):=Product_{j=0..k-1} (x-j) (falling factorials). See the T. Koshy reference, pp. 263-4 (there are also two solutions for positive p, see the corresponding comment in A087475). - Wolfdieter Lang, Oct 21 2010
n + sqrt(a(n)) = [2*n;2*n,2*n,...] with the regular continued fraction with period 1. This is the even case. For the general case see A087475 with the Schroeder reference and comments. For the odd case see A078370.
a(n-1) counts configurations of non-attacking bishops on a 2 X n strip [Chaiken et al., Ann. Combin. 14 (2010) 419]. - R. J. Mathar, Jun 16 2011
Also numbers k such that 4*k-4 is a square. Hence this sequence is the union of A053755 and A069894. - Arkadiusz Wesolowski, Aug 02 2011
a(n) is also the Moore lower bound on the order, A191595(n), of an (n,5)-cage. - Jason Kimberley, Oct 17 2011
Left edge of the triangle in A195437: a(n+1) = A195437(n,0). - Reinhard Zumkeller, Nov 23 2011
If h (5,17,37,65,101,...) is prime is relatively prime to 6, then h^2-1 is divisible by 24. - Vincenzo Librandi, Apr 14 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as A005899(n)^2 - a(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
a(n) is also the number of permutations simultaneously avoiding 213 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n-1) is the maximum number of stages in the Gale-Shapley algorithm for finding a stable matching between two sets of n elements given an ordering of preferences for each element (see Gura et al.). - Melvin Peralta, Feb 07 2016
Because of Fermat's little theorem, a(n) is never divisible by 3. - Altug Alkan, Apr 08 2016
For n > 0, if a(n) points are placed inside an n X n square, it will always be the case that at least two of the points will be a distance of sqrt(2) units apart or less. - Melvin Peralta, Jan 21 2017
Also the limit as q->1^- of the unimodal polynomial (1-q^(n*k+1))/(1-q) after making the simplification k=n. The unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <= 1. See G_1(n,k) from arXiv:1711.11252. As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984. - Bryan T. Ek, Apr 11 2018
a(n) is the smallest number congruent to both 1 (mod n) and 2 (mod n+1). - David James Sycamore, Apr 04 2019
a(n) is the number of permutations of 1,2,...,n+1 with exactly one reduced decomposition. - Richard Stanley, Dec 22 2022
From Klaus Purath, Apr 03 2025: (Start)
The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*y^2 = -1. The values for k and the solutions x, y can be calculated using the following algorithm: k = n, x(0) = 1, x(1) = 4*D - 1, y(0) = 1, y(1) = 4*D - 3. The two recurrences are of the form (4*D - 2, -1). The solutions x, y of the Pell equations for n = {1 ... 14} are in OEIS.
It follows from the above that this sequence is a subsequence of A031396. (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 17*x^4 + 26*x^5 + 37*x^6 + 50*x^7 + 65*x^8 + ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • E. Gura and M. Maschler, Insights into Game Theory: An Alternative Mathematical Experience, Cambridge, 2008; p. 26.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.

Crossrefs

Left edge of A055096.
Cf. A059100, A117950, A087475, A117951, A114949, A117619 (sequences of form n^2 + K).
a(n+1) = A101220(n, n+1, 3).
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), this sequence (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A002496 (primes).
Cf. A254858.
Subsequence of A031396.

Programs

Formula

O.g.f.: (1-x+2*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
Sequences of the form a(n) = n^2 + K with offset 0 have o.g.f. (K - 2*K*x + K*x^2 + x + x^2)/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a*(n-3). - R. J. Mathar, Apr 28 2008
For n > 0: a(n-1) = A143053(A000290(n)) - 1. - Reinhard Zumkeller, Jul 20 2008
A143053(a(n)) = A000290(n+1). - Reinhard Zumkeller, Jul 20 2008
a(n)*a(n-2) = (n-1)^4 + 4. - Reinhard Zumkeller, Feb 12 2009
a(n) = A156798(n)/A087475(n). - Reinhard Zumkeller, Feb 16 2009
From Reinhard Zumkeller, Mar 08 2010: (Start)
a(n) = A170949(A002061(n+1));
A170949(a(n)) = A132411(n+1);
A170950(a(n)) = A002061(n+1). (End)
For n > 1, a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n - 2)^2 + (a(n) + n - 1 + a(n) + n)^2 = (n+1) *(6*n^4 + 18*n^3 + 26*n^2 + 19*n + 6) / 6 = (a(n) + n)^2 + ... + (a(n) + 2*n)^2. - Charlie Marion, Jan 10 2011
From Eric Werley, Jun 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2.
a(n) = a(n-1) + 2*n - 1. (End)
a(n) = (n-1)^2 + 2(n-1) + 2 = 122 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
a(n)*a(n+1) = a(n*(n+1) + 1) so a(1)*a(2) = a(3). More generally, a(n)*a(n+k) = a(n*(n+k) + 1) + k^2 - 1. - Jon Perry, Aug 01 2012
a(n) = (n!)^2* [x^n] BesselI(0, 2*sqrt(x))*(1+x). - Peter Luschny, Aug 25 2012
a(n) = A070216(n,1) for n > 0. - Reinhard Zumkeller, Nov 11 2012
E.g.f.: exp(x)*(1 + x + x^2). - Geoffrey Critzer, Aug 30 2013
a(n) = A254858(n-2,3) for n > 2. - Reinhard Zumkeller, Feb 09 2015
Sum_{n>=0} (-1)^n / a(n) = (1+Pi/sinh(Pi))/2 = 0.636014527491... = A367976 . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/2 = 2.076674... = A113319. - Vaclav Kotesovec, Apr 10 2016
4*a(n) = A001105(n-1) + A001105(n+1). - Bruno Berselli, Jul 03 2017
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi)*sinh(sqrt(2)*Pi).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi). (End)
Sum_{n>=0} a(n)/n! = 3*e. - Davide Rotondo, Feb 16 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A000404 Numbers that are the sum of 2 nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178
Offset: 1

Views

Author

Keywords

Comments

From the formula it is easy to see that if k is in this sequence, then so are all odd powers of k. - T. D. Noe, Jan 13 2009
Also numbers whose cubes are the sum of two nonzero squares. - Joe Namnath and Lawrence Sze
A line perpendicular to y=mx has its first integral y-intercept at a^2+b^2. The remaining ones for that slope are multiples of that primitive value. - Larry J Zimmermann, Aug 19 2010
The primes in this sequence are sequence A002313.
Complement of A018825; A025426(a(n)) > 0; A063725(a(n)) > 0. - Reinhard Zumkeller, Aug 16 2011
If the two squares are not equal, then any power is still in the sequence: if k = x^2 + y^2 with x != y, then k^2 = (x^2-y^2)^2 + (2xy)^2 and k^3 = (x(x^2-3y^2))^2 + (y(3x^2-y^2))^2, etc. - Carmine Suriano, Jul 13 2012
There are never more than 3 consecutive terms that differ by 1. Triples of consecutive terms that differ by 1 occur infinitely many times, for example, 2(k^2 + k)^2, (k^2 - 1)^2 + (k^2 + 2 k)^2, and (k^2 + k - 1)^2 + (k^2 + k + 1)^2 for any integer k > 1. - Ivan Neretin, Mar 16 2017 [Corrected by Jerzy R Borysowicz, Apr 14 2017]
Number of terms less than 10^k, k=1,2,3,...: 3, 34, 308, 2690, 23873, 215907, 1984228, ... - Muniru A Asiru, Feb 01 2018
The squares in this sequence are the squares of the so-called hypotenuse numbers A009003. - M. F. Hasler, Jun 20 2025

Examples

			25 = 3^2 + 4^2, therefore 25 is a term. Note that also 25^3 = 15625 = 44^2 + 117^2, therefore 15625 is a term.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 103.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 75, Theorem 4, with Theorem 2, p. 15.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

A001481 gives another version (allowing for zero squares).
Cf. A004431 (2 distinct squares), A063725 (number of representations), A024509 (numbers with multiplicity), A025284, A018825. Also A050803, A050801, A001105, A033431, A084888, A000578, A000290, A057961, A232499, A007692.
Cf. A003325 (analog for cubes), A003336 (analog for 4th powers).
Cf. A009003 (square roots of the squares in this sequence).
Column k=2 of A336725.

Programs

  • GAP
    P:=List([1..10^4],i->i^2);;
    A000404 := Set(Flat(List(P, i->List(P, j -> i+j)))); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    import Data.List (findIndices)
    a000404 n = a000404_list !! (n-1)
    a000404_list = findIndices (> 0) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    lst:=[]; for n in [1..178] do f:=Factorization(n); if IsSquare(n) then for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 1 then Append(~lst, n); break; end if; end for; else t:=0; for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 3 and d[2] mod 2 eq 1 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, n); end if; end if; end for; lst; // Arkadiusz Wesolowski, Feb 16 2017
    
  • Maple
    nMax:=178: A:={}: for i to floor(sqrt(nMax)) do for j to floor(sqrt(nMax)) do if i^2+j^2 <= nMax then A := `union`(A, {i^2+j^2}) else  end if end do end do: A; # Emeric Deutsch, Jan 02 2017
  • Mathematica
    nMax=1000; n2=Floor[Sqrt[nMax-1]]; Union[Flatten[Table[a^2+b^2, {a,n2}, {b,a,Floor[Sqrt[nMax-a^2]]}]]]
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 24 2016 *)
    Module[{upto=200},Select[Union[Total/@Tuples[Range[Sqrt[upto]]^2,2]],#<= upto&]] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    is_A000404(n)= for( i=1,#n=factor(n)~%4, n[1,i]==3 && n[2,i]%2 && return); n && ( vecmin(n[1,])==1 || (n[1,1]==2 && n[2,1]%2)) \\ M. F. Hasler, Feb 07 2009
    
  • PARI
    list(lim)=my(v=List(),x2); lim\=1; for(x=1,sqrtint(lim-1), x2=x^2; for(y=1,sqrtint(lim-x2), listput(v,x2+y^2))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000404_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            c = False
            for p in (f:=factorint(n)):
                if (q:= p & 3)==3 and f[p]&1:
                    break
                elif q == 1:
                    c = True
            else:
                if c or f.get(2,0)&1:
                    yield n
    A000404_list = list(islice(A000404_gen(),30)) # Chai Wah Wu, Jul 01 2022

Formula

Let k = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s. Then k is a term iff 1) b_j == 0 (mod 2) for j=1..s and 2) r > 0 or t == 1 (mod 2) (or both).
From Charles R Greathouse IV, Nov 18 2022: (Start)
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533.
There are B(x) = (x/sqrt(log x)) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. (End)

Extensions

Edited by Ralf Stephan, Nov 15 2004
Typo in formula corrected by M. F. Hasler, Feb 07 2009
Erroneous Mathematica program fixed by T. D. Noe, Aug 07 2009
PARI code fixed for versions > 2.5 by M. F. Hasler, Jan 01 2013

A016825 Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.

Original entry on oeis.org

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234
Offset: 0

Views

Author

Keywords

Comments

Twice the odd numbers, also called singly even numbers.
Numbers having equal numbers of odd and even divisors: A001227(a(n)) = A000005(2*a(n)). - Reinhard Zumkeller, Dec 28 2003
Continued fraction for coth(1/2) = (e+1)/(e-1). The continued fraction for tanh(1/2) = (e-1)/(e+1) would be a(0) = 0, a(n) = A016825(n-1), n >= 1.
No solutions to a(n) = b^2 - c^2. - Henry Bottomley, Jan 13 2001
Sequence gives m such that 8 is the largest power of 2 dividing A003629(k)^m-1 for any k. - Benoit Cloitre, Apr 05 2002
k such that Sum_{d|k} (-1)^d = A048272(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} phi(d)*mu(k/d) = A007431(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} (d/A000005(d))*mu(k/d) = 0, k such that Sum_{d|k}(A000005(d)/d)*mu(k/d) = 0. - Benoit Cloitre, Apr 19 2002
Solutions to phi(x) = phi(x/2); primorial numbers are here. - Labos Elemer, Dec 16 2002
Together with 1, numbers that are not the leg of a primitive Pythagorean triangle. - Lekraj Beedassy, Nov 25 2003
For n > 0: complement of A107750 and A023416(a(n)-1) = A023416(a(n)) <> A023416(a(n)+1). - Reinhard Zumkeller, May 23 2005
Also the minimal value of Sum_{i=1..n+2} (p(i) - p(i+1))^2, where p(n+3) = p(1), as p ranges over all permutations of {1,2,...,n+2} (see the Mihai reference). Example: a(2)=10 because the values of the sum for the permutations of {1,2,3,4} are 10 (8 times), 12 (8 times) and 18 (8 times). - Emeric Deutsch, Jul 30 2005
Except for a(n)=2, numbers having 4 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
A139391(a(n)) = A006370(a(n)) = A005408(n). - Reinhard Zumkeller, Apr 17 2008
Also a(n) = (n-1) + n + (n+1) + (n+2), so a(n) and -a(n) are all the integers that are sums of four consecutive integers. - Rick L. Shepherd, Mar 21 2009
The denominator in Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 13 2011
This sequence gives the positive zeros of i^x + 1 = 0, x real, where i^x = exp(i*x*Pi/2). - Ilya Gutkovskiy, Aug 08 2015
Numbers k such that Sum_{j=1..k} j^3 is not a multiple of k. - Chai Wah Wu, Aug 23 2017
Numbers k such that Lucas(k) is a multiple of 3. - Bruno Berselli, Oct 17 2017
Also numbers k such that t^k == -1 (mod 5), where t is a term of A047221. - Bruno Berselli, Dec 28 2017
The even numbers form a ring, and these are the primes in that ring. Note that unique factorization into primes does not hold, since 60 = 2*30 = 6*10. - N. J. A. Sloane, Nov 11 2019
Also numbers ending with 10 in base 2. - John Keith, May 09 2022

Examples

			0.4621171572600097585023184... = 0 + 1/(2 + 1/(6 + 1/(10 + 1/(14 + ...)))), i.e., c.f. for tanh(1/2).
2.1639534137386528487700040... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))), i.e., c.f. for coth(1/2).
		

References

  • H. Bass, Mathematics, Mathematicians and Mathematics Education, Bull. Amer. Math. Soc. (N.S.) 42 (2004), no. 4, 417-430.
  • Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 262, 278.

Crossrefs

First differences of A001105.
Cf. A160327 (decimal expansion).
Subsequence of A042963.
Essentially the complement of A042965.

Programs

Formula

a(n) = 4*n + 2, for n >= 0.
a(n) = 2*A005408(n). - Lekraj Beedassy, Nov 28 2003
a(n) = A118413(n+1,2) for n>1. - Reinhard Zumkeller, Apr 27 2006
From Michael Somos, Apr 11 2007: (Start)
G.f.: 2*(1+x)/(1-x)^2.
E.g.f.: 2*(1+2*x)*exp(x).
a(n) = a(n-1) + 4.
a(-1-n) = -a(n). (End)
a(n) = 8*n - a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Nov 20 2010
From Reinhard Zumkeller, Jun 11 2012, Jun 30 2012 and Jul 20 2012: (Start)
A080736(a(n)) = 0.
A007814(a(n)) = 1;
A037227(a(n)) = 3.
A214546(a(n)) = 0. (End)
a(n) = T(n+2) - T(n-2) where T(n) = n*(n+1)/2 = A000217(n). In general, if M(k,n) = 2*k*n + k, then M(k,n) = T(n+k) - T(n-k). - Charlie Marion, Feb 24 2020
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1/sqrt(2-sqrt(2)) (A285871).
Product_{n>=1} (1 + (-1)^n/a(n)) = sqrt(1-1/sqrt(2)) (A154739). (End)

A040000 a(0)=1; a(n)=2 for n >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Sequence of electron arrangement in the 1s 2s and 3s atomic subshells. Cf. A001105, A016825. - Jeremy Gardiner, Dec 19 2004
Binomial transform of A165326. - Philippe Deléham, Sep 16 2009
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
Eventual period is (2). - Zak Seidov, Mar 05 2011
Also decimal expansion of 11/90. - Vincenzo Librandi, Sep 24 2011
a(n) = 3 - A054977(n); right edge of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020

Examples

			sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
11/90 = 0.1222222222222222222... - _Natan Arie Consigli_, Sep 11 2016
		

References

  • A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 276-278.

Crossrefs

Convolution square is A008574.
See A003945 etc. for (1+x)/(1-k*x).
From Jaume Oliver Lafont, Mar 26 2009: (Start)
Sum_{0<=k<=n} a(k) = A005408(n).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. A001333/A000129 (continued fraction convergents).
Cf. A000122, A002193 (sqrt(2) decimal expansion), A006487 (Egyptian fraction).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).

Programs

  • Haskell
    a040000 0 = 1; a040000 n = 2
    a040000_list = 1 : repeat 2  -- Reinhard Zumkeller, May 07 2012
  • Maple
    Digits := 100: convert(evalf(sqrt(2)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    a[ n_] := 2 - Boole[n == 0]; (* Michael Somos, Dec 28 2014 *)
    PadRight[{1},120,2] (* or *) RealDigits[11/90, 10, 120][[1]] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    {a(n) = 2-!n}; /* Michael Somos, Apr 16 2007 */
    
  • PARI
    a(n)=1+sign(n)  \\ Jaume Oliver Lafont, Mar 26 2009
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1]));  \\ Harry J. Smith, Apr 21 2009
    

Formula

G.f.: (1+x)/(1-x). - Paul Barry, Feb 28 2003
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A068875(n-k). - Paul Barry, Nov 14 2004
From Michael Somos, Apr 16 2007: (Start)
Euler transform of length 2 sequence [2, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w).
E.g.f.: 2*exp(x) - 1.
a(n) = a(-n) for all n in Z (one possible extension to n<0). (End)
G.f.: (1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 26 2009
G.f.: exp(2*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = Sum_{k=0..n} A108561(n,k)*(-1)^k. - Philippe Deléham, Nov 17 2013
a(n) = 1 + sign(n). - Wesley Ivan Hurt, Apr 16 2014
10 * 11/90 = 11/9 = (11/2 R)/(9/2 R) = Cp(4)/Cv(4) = A272005/A272004, with R = A081822 (or A070064). - Natan Arie Consigli, Sep 11 2016
a(n) = A001227(A000040(n+1)). - Omar E. Pol, Feb 28 2018
Showing 1-10 of 235 results. Next