cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002593 a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.

Original entry on oeis.org

0, 1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025, 130816, 166753, 209628, 260281, 319600, 388521, 468028, 559153, 662976, 780625, 913276, 1062153, 1228528, 1413721, 1619100, 1846081
Offset: 0

Views

Author

Keywords

Comments

The m-th term, for m = A065549(n), is perfect (A000396). - Lekraj Beedassy, Jun 04 2002
Partial sums of A016755. - Lekraj Beedassy, Jan 06 2004
Also, the k-th triangular number, where k = 2n^2 - 1 = A056220(n), i.e., a(n) = A000217(A056220(n)). - Lekraj Beedassy, Jun 11 2004
Also, the j-th hexagonal number, where j = n^2 = A000290(n), i.e., a(n) = A000384(A000290(n)) and a(n) = A056220(n) * A000290(n) or j * k. This sequence is a subsequence of the hexagonal number sequence and retains the aspect intrinsic to the hexagonal number sequence that each number in this sequence can be found by multiplying its triangular number by its hexagonal number. - Bruce J. Nicholson, Aug 22 2017
Odd numbers and their squares both having the form 2x-+1, we may write (2r+1)^3 = (2r+1)*(2s-1), where s = centered squares = (r+1)^2 + r^2. Since 2r+1 = (r+1)^2 - r^2, it follows immediately from summing telescopingly over n-1, the product 2*{(r+1)^4 - r^4} - {(r+1)^2 - r^2}, that Sum_{r=0..n-1} (2r+1)^3 = 2*n^4 - n^2 = n^2*(2n^2 - 1). - Lekraj Beedassy, Jun 16 2004
a(n) is also the starting term in the sum of a number M(n) of consecutive cubed integers equaling a squared integer (A253724) for M(n) equal to twice a squared integer (A001105). Numbers a(n) such that a^3 + (a+1)^3 + ... + (a+M-1)^3 = c^2 has nontrivial solutions over the integers for M equal to twice a squared integer (A001105). If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting from a^3 and equaling a squared integer c^2. For n >= 1, M(n) = 2n^2 (A001105), a(n) = M(M-1)/2 = n^2(2n^2 - 1), and c(n) = sqrt(M/2) (M(M^2-1)/2) = n^3(4n^4 - 1). The trivial solutions with M < 1 and a < 2 are not considered. - Vladimir Pletser, Jan 10 2015
Binomial transform of the sequence with offset 1 is (1, 27, 98, 120, 48, 0, 0, 0, ...). - Gary W. Adamson, Jul 23 2015

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 169, #31.
  • F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
    
  • Maple
    A002593:=-z*(z+1)*(z**2+22*z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
    a:= n-> n^2*(2*n^2-1): seq(a(n), n=0..50);  # Vladimir Pletser, Jan 10 2015
  • Mathematica
    CoefficientList[Series[(-x^4-23x^3-23x^2-x)/(x-1)^5,{x,0, 80}],x]  (* or *)
    Table[ n^2 (2n^2-1),{n,0,80}]  (* Harvey P. Dale, Mar 28 2011 *)
    Join[{0},Accumulate[Range[1,91,2]^3]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,28,153,496},40] (* Harvey P. Dale, Mar 22 2017 *)
  • PARI
    a(n) = n^2*(2*n^2 - 1) \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = A000217(A056220(n)). - Lekraj Beedassy, Jun 11 2004
G.f.: (-x^4 - 23*x^3 - 23*x^2 - x)/(x - 1)^5. - Harvey P. Dale, Mar 28 2011
a(n) = n^2*(2n^2 - 1). - Vladimir Pletser, Jan 10 2015
E.g.f.: exp(x)*x*(1 + 13*x + 24*x^2/2! + 12*x^3/3!). - Wolfdieter Lang, Mar 11 2017
a(n) = A000384(A000290(n)) = A056220(n) * A000290(n). - Bruce J. Nicholson, Aug 22 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - Pi^2/6 - cot(Pi/sqrt(2))*Pi/sqrt(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = cosec(Pi/sqrt(2))*Pi/sqrt(2) - Pi^2/12 - 1. (End)

A253724 Numbers c(n) whose squares are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105).

Original entry on oeis.org

504, 8721, 65472, 312375, 1119528, 3293829, 8388096, 19131147, 39999000, 77947353, 143325504, 250991871, 421651272, 683434125, 1073737728, 1641349779, 2448874296, 3575480097, 5119992000, 7204344903, 9977420904, 13619289621, 18345871872, 24414046875
Offset: 2

Views

Author

Vladimir Pletser, Jan 10 2015

Keywords

Comments

Numbers c(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for M(n) being twice a squared integer (A001105) and b(n)=(A002593).
If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting at b^3 and equaling to a squared integer c^2. For n>=1, M(n)= 2n^2 (A001105), b(n) = M(M-1)/2 = n^2(2n^2 - 1) (A002593), and c(n)= sqrt(M/2) (M(M^2-1)/2)= n^3(4n^4 - 1) (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.

Examples

			For n=2, M(n)=8, b(n)=28, c(n)=504.
See "File Triplets (M,b,c) for M=2n^2" link.
		

Crossrefs

Programs

  • Magma
    [n^3*(4*n^4 - 1): n in [2..30]]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    restart: for n from 2 to 50000 do a:= n^3*(4*n^4 - 1): print (a); end do:
  • Mathematica
    f[n_] := n^3 (4 n^4 - 1); Rest@Array[f, 32] (* Michael De Vlieger, Jan 28 2015 *)
  • PARI
    Vec(-3*x^2*(x^7-8*x^6+27*x^5-216*x^4-1521*x^3-3272*x^2-1563*x-168)/(x-1)^8 + O(x^100)) \\ Colin Barker, Jan 14 2015
    

Formula

a(n) = n^3(4n^4 - 1).
G.f.: -3*x^2*(x^7-8*x^6+27*x^5-216*x^4-1521*x^3-3272*x^2-1563*x-168) / (x-1)^8. - Colin Barker, Jan 14 2015

A218979 Numbers n such that some sum of n consecutive positive cubes is a square.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 57, 59, 60, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 76, 77, 79, 81, 82, 83, 85, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Michel Marcus, Nov 08 2012

Keywords

Comments

The trivial solutions with x = 0 and x = 1 are not considered here.
Numbers n such that x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 has nontrivial solutions over the integers.
The nontrivial solutions are found by solving Y^2 = X^3 + d(n)*X with d(n) = n^2*(n^2-1)/4 (A006011), Y = n*y and X = n*x + (1/2)*n*(n-1). [Corrected by Derek Orr, Aug 30 2014]
x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 can also be written as y^2 = n(x + (n-1)/2)(n(x + (n-1)/2) + x(x-1)). - Vladimir Pletser, Aug 30 2014
There are 892 triples (n,x,y), with n and x less than 10^5 (1 < n,x < 10^5), which are nontrivial solutions of x^3 + (x+1)^3 + ... + (x+n-1)^3 = y^2 (note that (n,x,y) corresponds to (M,a,c) in A253679, A253680, A253681, A253707, A253708, A253709, A253724, A253725). - Vladimir Pletser, Jan 10 2015

Examples

			See "Examples of triples" link.
		

Crossrefs

Programs

  • PARI
    a(n)=for(x=2,10^7, /* note this limit only generates the terms in the data section */ X = n*x + (1/2)*n*(n-1); d=n^2*(n^2-1)/4;if(issquare(X^3+d*X),return(x)))
    n=1;while(n<100,if(a(n),print1(n,", "));n++) \\ Derek Orr, Aug 30 2014

Extensions

Name changed, a(1) = 1 prepended and a(39)-a(68) from Derek Orr, Aug 30 2014
More terms for 50Vladimir Pletser, Jan 10 2015
Showing 1-3 of 3 results.