cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 122 results. Next

A118923 Triangle T(n,k) built by placing T(n,0)=A000012(n) in the left edge, T(n,n)=A079978(n) on the right edge and filling the body with the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 3, 3, 2, 0, 1, 4, 6, 5, 2, 0, 1, 5, 10, 11, 7, 2, 1, 1, 6, 15, 21, 18, 9, 3, 0, 1, 7, 21, 36, 39, 27, 12, 3, 0, 1, 8, 28, 57, 75, 66, 39, 15, 3, 1, 1, 9, 36, 85, 132, 141, 105, 54, 18, 4, 0, 1, 10, 45, 121, 217, 273, 246, 159, 72, 22, 4, 0, 1, 11, 55, 166
Offset: 0

Views

Author

Alford Arnold, May 05 2006

Keywords

Comments

The fourth diagonal is 1, 2, 5, 11, 21, ..., which is 1 + A000292. The fifth diagonal is 0, 2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, ..., which is A051743.
The array A007318 is generated by placing A000012 on both edges with the same Pascal-like recurrence, and the array A059259 uses edges defined by A000012 and A059841. - R. J. Mathar, Jan 21 2008
From Michael A. Allen, Nov 30 2021: (Start)
T(n,n-k) is the (n,k)-th entry of the (1/(1-x^3), x/(1-x)) Riordan array.
Sums of rows give A077947.
Sums of antidiagonals give A079962. (End)

Examples

			The table begins
  1
  1  0
  1  1  0
  1  2  1  1
  1  3  3  2  0
  1  4  6  5  2  0
  1  5 10 11  7  2  1
  1  6 15 21 18  9  3  0
		

Crossrefs

Programs

  • Maple
    A000012 := proc(n) 1 ; end: A079978 := proc(n) if n mod 3 = 0 then 1; else 0 ; fi ; end: A118923 := proc(n,k) if k = 0 then A000012(n); elif k = n then A079978(n) ; else A118923(n-1,k)+A118923(n-1,k-1) ; fi ; end: for n from 0 to 15 do for k from 0 to n do printf("%d, ",A118923(n,k)) ; od: od: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten@Table[CoefficientList[Series[1/((1 + x*y + x^2*y^2)(1 - x - x*y)), {x, 0, 23}, {y, 0, 11}], {x, y}][[n + 1, k + 1]], {n, 0, 11}, {k, 0, n}] (* Michael A. Allen, Nov 30 2021 *)

Formula

From Michael A. Allen, Nov 30 2021: (Start)
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/3)} binomial(n-3*j,n-k)/(n-3*j).
G.f.: 1/((1+x*y+(x*y)^2)*(1-x-x*y)). (End)

Extensions

Edited and extended by R. J. Mathar, Jan 21 2008
Offset changed by Michael A. Allen, Nov 30 2021

A001221 Number of distinct primes dividing n (also called omega(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Keywords

Comments

From Peter C. Heinig (algorithms(AT)gmx.de), Mar 08 2008: (Start)
This is also the number of maximal ideals of the ring (Z/nZ,+,*). Since every finite integral domain must be a field, every prime ideal of Z/nZ is a maximal ideal and since in general each maximal ideal is prime, there are just as many prime ideals as maximal ones in Z/nZ, so the sequence gives the number of prime ideals of Z/nZ as well.
The reason why this number is given by the sequence is that the ideals of Z/nZ are precisely the subgroups of (Z/nZ,+). Hence for an ideal to be maximal it has form a maximal subgroup of (Z/nZ,+) and this is equivalent to having prime index in (Z/nZ) and this is equivalent to being generated by a single prime divisor of n.
Finally, all the groups arising in this way have different orders, hence are different, so the number of maximal ideals equals the number of distinct primes dividing n. (End)
Equals double inverse Mobius transform of A143519, where A051731 = the inverse Mobius transform. - Gary W. Adamson, Aug 22 2008
a(n) is the number of unitary prime power divisors of n (not including 1). - Jaroslav Krizek, May 04 2009 [corrected by Ilya Gutkovskiy, Oct 09 2019]
Sum_{d|n} 2^(-A001221(d) - A001222(n/d)) = Sum_{d|n} 2^(-A001222(d) - A001221(n/d)) = 1 (see Dressler and van de Lune link). - Michel Marcus, Dec 18 2012
Up to 2*3*5*7*11*13*17*19*23*29 - 1 = 6469693230 - 1, also the decimal expansion of the constant 0.01111211... = Sum_{k>=0} 1/(10 ^ A000040(k) - 1) (see A073668). - Eric Desbiaux, Jan 20 2014
The average order of a(n): Sum_{k=1..n} a(k) ~ Sum_{k=1..n} log log k. - Daniel Forgues, Aug 13-16 2015
From Peter Luschny, Jul 13 2023: (Start)
We can use A001221 and A001222 to classify the positive integers as follows.
A001222(n) = A001221(n) = 0 singles out {1}.
Restricting to n > 1:
A001222(n)^A001221(n) = 1: A000040, prime numbers.
A001221(n)^A001222(n) = 1: A246655, prime powers.
A001222(n)^A001221(n) > 1: A002808, the composite numbers.
A001221(n)^A001222(n) > 1: A024619, complement of A246655.
n^(A001222(n) - A001221(n)) = 1: A144338, products of distinct primes. (End)
Inverse Möbius transform of the characteristic function of primes (A010051). - Wesley Ivan Hurt, Jun 22 2024
Dirichlet convolution of A010051(n) and 1. - Wesley Ivan Hurt, Jul 15 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 48-57.
  • J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/Cambridge University Press London 1935.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001222 (primes counted with multiplicity), A046660, A285577, A346617. Partial sums give A013939.
Sum of the k-th powers of the primes dividing n for k=0..10: this sequence (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), A351197 (k=9), A351198 (k=10).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k=0..10: this sequence (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a001221 = length . snd . unzip . factorise
    -- Reinhard Zumkeller, Nov 28 2015
    
  • Julia
    using Nemo
    function NumberOfPrimeFactors(n; distinct=true)
        distinct && return length(factor(ZZ(n)))
        sum(e for (p, e) in factor(ZZ(n)); init=0)
    end
    println([NumberOfPrimeFactors(n) for n in 1:60]) # Peter Luschny, Jan 02 2024
  • Magma
    [#PrimeDivisors(n): n in [1..120]]; // Bruno Berselli, Oct 15 2021
    
  • Maple
    A001221 := proc(n) local t1, i; if n = 1 then return 0 else t1 := 0; for i to n do if n mod ithprime(i) = 0 then t1 := t1 + 1 end if end do end if; t1 end proc;
    A001221 := proc(n) nops(numtheory[factorset](n)) end proc: # Emeric Deutsch
    omega := n -> NumberTheory:-NumberOfPrimeFactors(n, 'distinct'): # Peter Luschny, Jun 15 2025
  • Mathematica
    Array[ Length[ FactorInteger[ # ] ]&, 100 ]
    PrimeNu[Range[120]]  (* Harvey P. Dale, Apr 26 2011 *)
  • MuPAD
    func(nops(numlib::primedivisors(n)), n):
    
  • MuPAD
    numlib::omega(n)$ n=1..110 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=omega(n)
    
  • Python
    from sympy.ntheory import primefactors
    print([len(primefactors(n)) for n in range(1, 1001)])  # Indranil Ghosh, Mar 19 2017
    
  • Sage
    def A001221(n): return sum(1 for p in divisors(n) if is_prime(p))
    [A001221(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
    
  • SageMath
    [sloane.A001221(n) for n in (1..111)] # Giuseppe Coppoletta, Jan 19 2015
    
  • SageMath
    [gp.omega(n) for n in range(1,101)] # G. C. Greubel, Jul 13 2024
    

Formula

G.f.: Sum_{k>=1} x^prime(k)/(1-x^prime(k)). - Benoit Cloitre, Apr 21 2003; corrected by Franklin T. Adams-Watters, Sep 01 2009
Dirichlet generating function: zeta(s)*primezeta(s). - Franklin T. Adams-Watters, Sep 11 2005
Additive with a(p^e) = 1.
a(1) = 0, a(p) = 1, a(pq) = 2, a(pq...z) = k, a(p^k) = 1, where p, q, ..., z are k distinct primes and k natural numbers. - Jaroslav Krizek, May 04 2009
a(n) = log_2(Sum_{d|n} mu(d)^2). - Enrique Pérez Herrero, Jul 09 2012
a(A002110(n)) = n, i.e., a(prime(n)#) = n. - Jean-Marc Rebert, Jul 23 2015
a(n) = A091221(A091202(n)) = A069010(A156552(n)). - Antti Karttunen, circa 2004 & Mar 06 2017
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))^(1/prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = log_2(Sum_{k=1..n} mu(gcd(n,k))^2/phi(n/gcd(n,k))) = log_2(Sum_{k=1..n} mu(n/gcd(n,k))^2/phi(n/gcd(n,k))), where phi = A000010 and mu = A008683. - Richard L. Ollerton, May 13 2021
Sum_{k=1..n} 2^(-a(gcd(n,k)) - A001222(n/gcd(n,k)))/phi(n/gcd(n,k)) = Sum_{k=1..n} 2^(-A001222(gcd(n,k)) - a(n/gcd(n,k)))/phi(n/gcd(n,k)) = 1, where phi = A000010. - Richard L. Ollerton, May 13 2021
a(n) = A005089(n) + A005091(n) + A059841(n) = A005088(n) +A005090(n) +A079978(n). - R. J. Mathar, Jul 22 2021
From Wesley Ivan Hurt, Jun 22 2024: (Start)
a(n) = Sum_{p|n, p prime} 1.
a(n) = Sum_{d|n} c(d), where c = A010051. (End)

A000007 The characteristic function of {0}: a(n) = 0^n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Changing the offset to 1 gives the arithmetical function a(1) = 1, a(n) = 0 for n > 1, the identity function for Dirichlet multiplication (see Apostol). - N. J. A. Sloane
Changing the offset to 1 makes this the decimal expansion of 1. - N. J. A. Sloane, Nov 13 2014
Hankel transform (see A001906 for definition) of A000007 (powers of 0), A000012 (powers of 1), A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001018 (powers of 8), A001019 (powers of 9), A011557 (powers of 10), A001020 (powers of 11), etc. - Philippe Deléham, Jul 07 2005
This is the identity sequence with respect to convolution. - David W. Wilson, Oct 30 2006
a(A000004(n)) = 1; a(A000027(n)) = 0. - Reinhard Zumkeller, Oct 12 2008
The alternating sum of the n-th row of Pascal's triangle gives the characteristic function of 0, a(n) = 0^n. - Daniel Forgues, May 25 2010
The number of maximal self-avoiding walks from the NW to SW corners of a 1 X n grid. - Sean A. Irvine, Nov 19 2010
Historically there has been some disagreement as to whether 0^0 = 1. Graphing x^0 seems to support that conclusion, but graphing 0^x instead suggests that 0^0 = 0. Euler and Knuth have argued in favor of 0^0 = 1. For some calculators, 0^0 triggers an error, while in Mathematica, 0^0 is Indeterminate. - Alonso del Arte, Nov 15 2011
Another consequence of changing the offset to 1 is that then this sequence can be described as the sum of Moebius mu(d) for the divisors d of n. - Alonso del Arte, Nov 28 2011
With the convention 0^0 = 1, 0^n = 0 for n > 0, the sequence a(n) = 0^|n-k|, which equals 1 when n = k and is 0 for n >= 0, has g.f. x^k. A000007 is the case k = 0. - George F. Johnson, Mar 08 2013
A fixed point of the run length transform. - Chai Wah Wu, Oct 21 2016

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Characteristic function of {g}: this sequence (g = 0), A063524 (g = 1), A185012 (g = 2), A185013 (g = 3), A185014 (g = 4), A185015 (g = 5), A185016 (g = 6), A185017 (g = 7). - Jason Kimberley, Oct 14 2011
Characteristic function of multiples of g: this sequence (g = 0), A000012 (g = 1), A059841 (g = 2), A079978 (g = 3), A121262 (g = 4), A079998 (g = 5), A079979 (g = 6), A082784 (g = 7). - Jason Kimberley, Oct 14 2011

Programs

  • Haskell
    a000007 = (0 ^)
    a000007_list = 1 : repeat 0
    -- Reinhard Zumkeller, May 07 2012, Mar 27 2012
    
  • Magma
    [1] cat [0:n in [1..100]]; // Sergei Haller, Dec 21 2006
    
  • Maple
    A000007 := proc(n) if n = 0 then 1 else 0 fi end: seq(A000007(n), n=0..20);
    spec := [A, {A=Z} ]: seq(combstruct[count](spec, size=n+1), n=0..20);
  • Mathematica
    Table[If[n == 0, 1, 0], {n, 0, 99}]
    Table[Boole[n == 0], {n, 0, 99}] (* Michael Somos, Aug 25 2012 *)
    Join[{1},LinearRecurrence[{1},{0},102]] (* Ray Chandler, Jul 30 2015 *)
    PadRight[{1},120,0] (* Harvey P. Dale, Jul 18 2024 *)
  • PARI
    {a(n) = !n};
    
  • Python
    def A000007(n): return int(n==0) # Chai Wah Wu, Feb 04 2022

Formula

Multiplicative with a(p^e) = 0. - David W. Wilson, Sep 01 2001
a(n) = floor(1/(n + 1)). - Franz Vrabec, Aug 24 2005
As a function of Bernoulli numbers (cf. A027641: (1, -1/2, 1/6, 0, -1/30, ...)), triangle A074909 (the beheaded Pascal's triangle) * B_n as a vector = [1, 0, 0, 0, 0, ...]. - Gary W. Adamson, Mar 05 2012
a(n) = Sum_{k = 0..n} exp(2*Pi*i*k/(n+1)) is the sum of the (n+1)th roots of unity. - Franz Vrabec, Nov 09 2012
a(n) = (1-(-1)^(2^n))/2. - Luce ETIENNE, May 05 2015
a(n) = 1 - A057427(n). - Alois P. Heinz, Jan 20 2016
From Ilya Gutkovskiy, Sep 02 2016: (Start)
Binomial transform of A033999.
Inverse binomial transform of A000012. (End)

A002487 Stern's diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19
Offset: 0

Views

Author

Keywords

Comments

Also called fusc(n) [Dijkstra].
a(n)/a(n+1) runs through all the reduced nonnegative rationals exactly once [Stern; Calkin and Wilf].
If the terms are written as an array:
column 0 1 2 3 4 5 6 7 8 9 ...
row 0: 0
row 1: 1
row 2: 1,2
row 3: 1,3,2,3
row 4: 1,4,3,5,2,5,3,4
row 5: 1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5
row 6: 1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,...
...
then (ignoring row 0) the sum of the k-th row is 3^(k-1), each column is an arithmetic progression and the steps are nothing but the original sequence. - Takashi Tokita (butaneko(AT)fa2.so-net.ne.jp), Mar 08 2003
From N. J. A. Sloane, Oct 15 2017: (Start)
The above observation can be made more precise. Let A(n,k), n >= 0, 0 <= k <= 2^(n-1)-1 for k > 0, denote the entry in row n and column k of the left-justified array above.
The equations for columns 0,1,2,3,4,... are successively (ignoring row 0):
1 (n >= 1),
n (n >= 2),
n-1 (n >= 3),
2n-3 (n >= 3),
n-2 (n >= 4),
3n-7 (n >= 4),
...
and in general column k > 0 is given by
A(n,k) = a(k)*n - A156140(k) for n >= ceiling(log_2(k+1))+1, and 0 otherwise.
(End)
a(n) is the number of odd Stirling numbers S_2(n+1, 2r+1) [Carlitz].
Moshe Newman proved that the fraction a(n+1)/a(n+2) can be generated from the previous fraction a(n)/a(n+1) = x by 1/(2*floor(x) + 1 - x). The successor function f(x) = 1/(floor(x) + 1 - frac(x)) can also be used.
a(n+1) = number of alternating bit sets in n [Finch].
If f(x) = 1/(1 + floor(x) - frac(x)) then f(a(n-1)/a(n)) = a(n)/a(n+1) for n >= 1. If T(x) = -1/x and f(x) = y, then f(T(y)) = T(x) for x > 0. - Michael Somos, Sep 03 2006
a(n+1) is the number of ways of writing n as a sum of powers of 2, each power being used at most twice (the number of hyperbinary representations of n) [Carlitz; Lind].
a(n+1) is the number of partitions of the n-th integer expressible as the sum of distinct even-subscripted Fibonacci numbers (= A054204(n)), into sums of distinct Fibonacci numbers [Bicknell-Johnson, theorem 2.1].
a(n+1) is the number of odd binomial(n-k, k), 0 <= 2*k <= n. [Carlitz], corrected by Alessandro De Luca, Jun 11 2014
a(2^k) = 1. a(3*2^k) = a(2^(k+1) + 2^k) = 2. Sequences of terms between a(2^k) = 1 and a(2^(k+1)) = 1 are palindromes of length 2^k-1 with a(2^k + 2^(k-1)) = 2 in the middle. a(2^(k-1) + 1) = a(2^k - 1) = k+1 for k > 1. - Alexander Adamchuk, Oct 10 2006
The coefficients of the inverse of the g.f. of this sequence form A073469 and are related to binary partitions A000123. - Philippe Flajolet, Sep 06 2008
It appears that the terms of this sequence are the number of odd entries in the diagonals of Pascal's triangle at 45 degrees slope. - Javier Torres (adaycalledzero(AT)hotmail.com), Aug 06 2009
Let M be an infinite lower triangular matrix with (1, 1, 1, 0, 0, 0, ...) in every column shifted down twice:
1;
1, 0;
1, 1, 0;
0, 1, 0, 0;
0, 1, 1, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
...
Then this sequence A002487 (without initial 0) is the first column of lim_{n->oo} M^n. (Cf. A026741.) - Gary W. Adamson, Dec 11 2009 [Edited by M. F. Hasler, Feb 12 2017]
Member of the infinite family of sequences of the form a(n) = a(2*n); a(2*n+1) = r*a(n) + a(n+1), r = 1 for A002487 = row 1 in the array of A178239. - Gary W. Adamson, May 23 2010
Equals row 1 in an infinite array shown in A178568, sequences of the form
a(2*n) = r*a(n), a(2*n+1) = a(n) + a(n+1); r = 1. - Gary W. Adamson, May 29 2010
Row sums of A125184, the Stern polynomials. Equivalently, B(n,1), the n-th Stern polynomial evaluated at x = 1. - T. D. Noe, Feb 28 2011
The Kn1y and Kn2y triangle sums, see A180662 for their definitions, of A047999 lead to the sequence given above, e.g., Kn11(n) = A002487(n+1) - A000004(n), Kn12(n) = A002487(n+3) - A000012(n), Kn13(n) = A002487(n+5) - A000034(n+1) and Kn14(n) = A002487(n+7) - A157810(n+1). For the general case of the knight triangle sums see the Stern-Sierpiński triangle A191372. This triangle not only leads to Stern's diatomic series but also to snippets of this sequence and, quite surprisingly, their reverse. - Johannes W. Meijer, Jun 05 2011
Maximum of terms between a(2^k) = 1 and a(2^(k+1)) = 1 is the Fibonacci number F(k+2). - Leonid Bedratyuk, Jul 04 2012
Probably the number of different entries per antidiagonal of A223541. That would mean there are exactly a(n+1) numbers that can be expressed as a nim-product 2^x*2^y with x + y = n. - Tilman Piesk, Mar 27 2013
Let f(m,n) be the frequency of the integer n in the interval [a(2^(m-1)), a(2^m-1)]. Let phi(n) be Euler's totient function (A000010). Conjecture: for all integers m,n n<=m f(m,n) = phi(n). - Yosu Yurramendi, Sep 08 2014
Back in May 1995, it was proved that A000360 is the modulo 3 mapping, (+1,-1,+0)/2, of this sequence A002487 (without initial 0). - M. Jeremie Lafitte (Levitas), Apr 24 2017
Define a sequence chf(n) of Christoffel words over an alphabet {-,+}: chf(1) = '-'; chf(2*n+0) = negate(chf(n)); chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))). Then the length of the chf(n) word is fusc(n) = a(n); the number of '-'-signs in the chf(n) word is c-fusc(n) = A287729(n); the number of '+'-signs in the chf(n) word is s-fusc(n) = A287730(n). See examples below. - I. V. Serov, Jun 01 2017
The sequence can be extended so that a(n) = a(-n), a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1) for all n in Z. - Michael Somos, Jun 25 2019
Named after the German mathematician Moritz Abraham Stern (1807-1894), and sometimes also after the French clockmaker and amateur mathematician Achille Brocot (1817-1878). - Amiram Eldar, Jun 06 2021
It appears that a(n) is equal to the multiplicative inverse of A007305(n+1) mod A007306(n+1). For example, a(12) is 2, the multiplicative inverse of A007305(13) mod A007306(13), where A007305(13) is 4 and A007306(13) is 7. - Gary W. Adamson, Dec 18 2023

Examples

			Stern's diatomic array begins:
  1,1,
  1,2,1,
  1,3,2,3,1,
  1,4,3,5,2,5,3,4,1,
  1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1,
  1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,7,11,4,9,...
  ...
a(91) = 19, because 91_10 = 1011011_2; b_6=b_4=b_3=b_1=b_0=1, b_5=b_2=0;  L=5; m_1=0, m_2=1, m_3=3, m_4=4, m_5=6; c_1=2, c_2=3, c_3=2, c_4=3; f(1)=1, f(2)=2, f(3)=5, f(4)=8, f(5)=19. - _Yosu Yurramendi_, Jul 13 2016
From _I. V. Serov_, Jun 01 2017: (Start)
a(n) is the length of the Christoffel word chf(n):
n  chf(n) A070939(n)   a(n)
1   '-'       1          1
2   '+'       2          1
3   '+-'      2          2
4   '-'       3          1
5   '--+'     3          3
6   '-+'      3          2
... (End)
G.f. = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + ... - _Michael Somos_, Jun 25 2019
		

References

  • M. Aigner and G. M. Ziegler, Proofs from THE BOOK, 3rd ed., Berlin, Heidelberg, New York: Springer-Verlag, 2004, p. 97.
  • Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 114.
  • Krishna Dasaratha, Laure Flapan, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse and Matthew Stroegeny, A family of multi-dimensional continued fraction Stern sequences, Abtracts Amer. Math. Soc., Vol. 33 (#1, 2012), #1077-05-2543.
  • Edsger W. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232 (sequence is called fusc).
  • F. G. M. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhaengen und durch gewisse lineare Funktional-Gleichungen definirt werden, Verhandlungen der Koenigl. Preuss. Akademie der Wiss. Berlin (1850), pp. 36-42, Feb 18, 1850. Werke, II, pp. 705-711.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.3; pp. 148-149.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 117.
  • Thomas Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Record values are in A212289.
If the 1's are replaced by pairs of 1's we obtain A049456.
Inverse: A020946.
Cf. a(A001045(n)) = A000045(n). a(A062092(n)) = A000032(n+1).
Cf. A064881-A064886 (Stern-Brocot subtrees).
A column of A072170.
Cf. A049455 for the 0,1 version of Stern's diatomic array.
Cf. A000119, A262097 for analogous sequences in other bases and A277189, A277315, A277328 for related sequences with similar graphs.
Cf. A086592 and references therein to other sequences related to Kepler's tree of fractions.

Programs

  • Haskell
    a002487 n = a002487_list !! n
    a002487_list = 0 : 1 : stern [1] where
       stern fuscs = fuscs' ++ stern fuscs' where
         fuscs' = interleave fuscs $ zipWith (+) fuscs $ (tail fuscs) ++ [1]
       interleave []     ys = ys
       interleave (x:xs) ys = x : interleave ys xs
    -- Reinhard Zumkeller, Aug 23 2011
    
  • Julia
    using Nemo
    function A002487List(len)
        a, A = QQ(0), [0,1]
        for n in 1:len
            a = next_calkin_wilf(a)
            push!(A, denominator(a))
        end
    A end
    A002487List(91) |> println # Peter Luschny, Mar 13 2018
    
  • Magma
    [&+[(Binomial(k, n-k-1) mod 2): k in [0..n]]: n in [0..100]]; // Vincenzo Librandi, Jun 18 2019
    
  • Maple
    A002487 := proc(n) option remember; if n <= 1 then n elif n mod 2 = 0 then procname(n/2); else procname((n-1)/2)+procname((n+1)/2); fi; end: seq(A002487(n),n=0..91);
    A002487 := proc(m) local a,b,n; a := 1; b := 0; n := m; while n>0 do if type(n,odd) then b := a+b else a := a+b end if; n := floor(n/2); end do; b; end proc: seq(A002487(n),n=0..91); # Program adapted from E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. - Igor Urbiha (urbiha(AT)math.hr), Oct 28 2002. Since A007306(n) = a(2*n+1), this program can be adapted for A007306 by replacing b := 0 by b := 1.
    A002487 := proc(n::integer) local k; option remember; if n = 0 then 0 elif n=1 then 1 else add(K(k,n-1-k)*procname(n - k), k = 1 .. n) end if end proc:
    K := proc(n::integer, k::integer) local KC; if 0 <= k and k <= n and n-k <= 2 then KC:=1; else KC:= 0; end if; end proc: seq(A002487(n),n=0..91); # Thomas Wieder, Jan 13 2008
    # next Maple program:
    a:= proc(n) option remember; `if`(n<2, n,
          (q-> a(q)+(n-2*q)*a(n-q))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 11 2021
    fusc := proc(n) local a, b, c; a := 1; b := 0;
        for c in convert(n, base, 2) do
            if c = 0 then a := a + b else b := a + b fi od;
        b end:
    seq(fusc(n), n = 0..91); # Peter Luschny, Nov 09 2022
    Stern := proc(n, u) local k, j, b;
        b := j -> nops({seq(Bits:-Xor(k, j-k), k = 0..j)}):
        ifelse(n=0, 1-u, seq(b(j), j = 2^(n-1)-1..2^n-1-u)) end:
    seq(print([n], Stern(n, 1)), n = 0..5); # As shown in the comments.
    seq(print([n], Stern(n, 0)), n = 0..5); # As shown in the examples. # Peter Luschny, Sep 29 2024
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[ EvenQ[n], a[n/2], a[(n-1)/2] + a[(n+1)/2]]; Table[ a[n], {n, 0, 100}] (* end of program *)
    Onemore[l_] := Transpose[{l, l + RotateLeft[l]}] // Flatten;
    NestList[Onemore, {1}, 5] // Flatten  (*gives [a(1), ...]*) (* Takashi Tokita, Mar 09 2003 *)
    ToBi[l_] := Table[2^(n - 1), {n, Length[l]}].Reverse[l]; Map[Length,
    Split[Sort[Map[ToBi, Table[IntegerDigits[n - 1, 3], {n, 500}]]]]]  (*give [a(1), ...]*) (* Takashi Tokita, Mar 10 2003 *)
    A002487[m_] := Module[{a = 1, b = 0, n = m}, While[n > 0, If[OddQ[n], b = a+b, a = a+b]; n = Floor[n/2]]; b]; Table[A002487[n], {n, 0, 100}] (* Jean-François Alcover, Sep 06 2013, translated from 2nd Maple program *)
    a[0] = 0; a[1] = 1;
    Flatten[Table[{a[2*n] = a[n], a[2*n + 1] = a[n] + a[n + 1]}, {n, 0, 50}]] (* Horst H. Manninger, Jun 09 2021 *)
    nmax = 100; CoefficientList[Series[x*Product[(1 + x^(2^k) + x^(2^(k+1))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2022 *)
  • PARI
    {a(n) = n=abs(n); if( n<2, n>0, a(n\2) + if( n%2, a(n\2 + 1)))};
    
  • PARI
    fusc(n)=local(a=1,b=0);while(n>0,if(bitand(n,1),b+=a,a+=b);n>>=1);b \\ Charles R Greathouse IV, Oct 05 2008
    
  • PARI
    A002487(n,a=1,b=0)=for(i=0,logint(n,2),if(bittest(n,i),b+=a,a+=b));b \\ M. F. Hasler, Feb 12 2017, updated Feb 14 2019
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return n if n<2 else a(n//2) if n%2==0 else a((n - 1)//2) + a((n + 1)//2) # Indranil Ghosh, Jun 08 2017; corrected by Reza K Ghazi, Dec 27 2021
    
  • Python
    def a(n):
        a, b = 1, 0
        while n > 0:
            if n & 1:
                b += a
            else:
                a += b
            n >>= 1
        return b
    # Reza K Ghazi, Dec 29 2021
    
  • Python
    def A002487(n): return sum(int(not (n-k-1) & ~k) for k in range(n)) # Chai Wah Wu, Jun 19 2022
    
  • Python
    # (fast way for big vectors)
    from math import log, ceil
    import numpy
    how_many_terms = 2**20  # (Powers of 2 recommended but other integers are also possible.)
    A002487, A002487[1]  = numpy.zeros(2**(ce:=ceil(log(how_many_terms,2))), dtype=object), 1
    for exponent in range(1,ce):
        L, L2 = 2**exponent, 2**(exponent+1)
        A002487[L2 - 1] = exponent + 1
        A002487[L:L2][::2] = A002487[L >> 1: L]
        A002487[L + 1:L2 - 2][::2] = A002487[L:L2 - 3][::2]  +  A002487[L + 2:L2 - 1][::2]
    print(list(A002487[0:100])) # Karl-Heinz Hofmann, Jul 22 2025
  • R
    N <- 50 # arbitrary
    a <- 1
    for (n in 1:N)
    {
      a[2*n    ] = a[n]
      a[2*n + 1] = a[n] + a[n+1]
      a
    }
    a
    # Yosu Yurramendi, Oct 04 2014
    
  • R
    # Given n, compute a(n) by taking into account the binary representation of n
    a <- function(n){
      b <- as.numeric(intToBits(n))
      l <- sum(b)
      m <- which(b == 1)-1
      d <- 1
      if(l > 1) for(j in 1:(l-1)) d[j] <- m[j+1]-m[j]+1
      f <- c(0,1)
      if(l > 1) for(j in 3:(l+1)) f[j] <- d[j-2]*f[j-1]-f[j-2]
      return(f[l+1])
    } # Yosu Yurramendi, Dec 13 2016
    
  • R
    # computes the sequence as a vector A, rather than function a() as above.
    A <- c(1,1)
    maxlevel <- 5 # by choice
    for(m in 1:maxlevel) {
      A[2^(m+1)] <- 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        A[2^r*(2*k+1)] <- A[2^r*(2*k)] + A[2^r*(2*k+2)]
    }}
    A # Yosu Yurramendi, May 08 2018
    
  • Sage
    def A002487(n):
        M = [1, 0]
        for b in n.bits():
            M[b] = M[0] + M[1]
        return M[1]
    print([A002487(n) for n in (0..91)])
    # For a dual see A174980. Peter Luschny, Nov 28 2017
    
  • Scheme
    ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization
    (definec (A002487 n) (cond ((<= n 1) n) ((even? n) (A002487 (/ n 2))) (else (+ (A002487 (/ (- n 1) 2)) (A002487 (/ (+ n 1) 2))))))
    ;; Antti Karttunen, Nov 05 2016
    

Formula

a(n+1) = (2*k+1)*a(n) - a(n-1) where k = floor(a(n-1)/a(n)). - David S. Newman, Mar 04 2001
Let e(n) = A007814(n) = exponent of highest power of 2 dividing n. Then a(n+1) = (2k+1)*a(n)-a(n-1), n > 0, where k = e(n). Moreover, floor(a(n-1)/a(n)) = e(n), in agreement with D. Newman's formula. - Dragutin Svrtan (dsvrtan(AT)math.hr) and Igor Urbiha (urbiha(AT)math.hr), Jan 10 2002
Calkin and Wilf showed 0.9588 <= limsup a(n)/n^(log(phi)/log(2)) <= 1.1709 where phi is the golden mean. Does this supremum limit = 1? - Benoit Cloitre, Jan 18 2004. Coons and Tyler show the limit is A246765 = 0.9588... - Kevin Ryde, Jan 09 2021
a(n) = Sum_{k=0..floor((n-1)/2)} (binomial(n-k-1, k) mod 2). - Paul Barry, Sep 13 2004
a(n) = Sum_{k=0..n-1} (binomial(k, n-k-1) mod 2). - Paul Barry, Mar 26 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 2*u*v*w - u^2*w. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 - 3*u1^2*u2*u6 + 3*u2^3*u6 - u2^3*u3. - Michael Somos, May 02 2005
G.f.: x * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))) [Carlitz].
a(n) = a(n-2) + a(n-1) - 2*(a(n-2) mod a(n-1)). - Mike Stay, Nov 06 2006
A079978(n) = (1 + e^(i*Pi*A002487(n)))/2, i=sqrt(-1). - Paul Barry, Jan 14 2005
a(n) = Sum_{k=1..n} K(k, n-k)*a(n - k), where K(n,k) = 1 if 0 <= k AND k <= n AND n-k <= 2 and K(n,k) = 0 else. (When using such a K-coefficient, several different arguments to K or several different definitions of K may lead to the same integer sequence. For example, if we drop the condition k <= n in the above definition, then we arrive at A002083 = Narayana-Zidek-Capell numbers.) - Thomas Wieder, Jan 13 2008
a(k+1)*a(2^n - k) - a(k)*a(2^n - (k+1)) = 1; a(2^n - k) + a(k) = a(2^(n+1) + k). Both formulas hold for 0 <= k <= 2^n - 1. G.f.: G(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(k+1)*z^k + ... Define f(z) = (1 + z + z^2), then G(z) = lim f(z)*f(z^2)*f(z^4)* ... *f(z^(2^n))*... = (1 + z + z^2)*G(z^2). - Arie Werksma (werksma(AT)tiscali.nl), Apr 11 2008
a(k+1)*a(2^n - k) - a(k)*a(2^n - (k+1)) = 1 (0 <= k <= 2^n - 1). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
a(2^n + k) = a(2^n - k) + a(k) (0 <= k <= 2^n). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
Let g(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(k+1)*z^k + ..., f(z) = 1 + z + z^2. Then g(z) = lim_{n->infinity} f(z)*f(z^2)*f(z^4)*...*f(z^(2^n)), g(z) = f(z)*g(z^2). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
For 0 <= k <= 2^n - 1, write k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1) where b(0), b(1), etc. are 0 or 1. Define a 2 X 2 matrix X(m) with entries x(1,1) = x(2,2) = 1, x(1,2) = 1 - b(m), x(2,1) = b(m). Let P(n)= X(0)*X(1)* ... *X(n-1). The entries of the matrix P are members of the sequence: p(1,1) = a(k+1), p(1,2) = a(2^n - (k+1)), p(2,1) = a(k), p(2,2) = a(2^n - k). - Arie Werksma (werksma(AT)tiscali.nl), Apr 20 2008
Let f(x) = A030101(x); if 2^n + 1 <= x <= 2^(n + 1) and y = 2^(n + 1) - f(x - 1) then a(x) = a(y). - Arie Werksma (Werksma(AT)Tiscali.nl), Jul 11 2008
a(n) = A126606(n + 1) / 2. - Reikku Kulon, Oct 05 2008
Equals infinite convolution product of [1,1,1,0,0,0,0,0,0] aerated A000079 - 1 times, i.e., [1,1,1,0,0,0,0,0,0] * [1,0,1,0,1,0,0,0,0] * [1,0,0,0,1,0,0,0,1]. - Mats Granvik and Gary W. Adamson, Oct 02 2009; corrected by Mats Granvik, Oct 10 2009
a(2^(p+2)*n+2^(p+1)-1) - a(2^(p+1)*n+2^p-1) = A007306(n+1), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 07 2013
a(2*n-1) = A007306(n), n > 0. - Yosu Yurramendi, Jun 23 2014
a(n*2^m) = a(n), m>0, n > 0. - Yosu Yurramendi, Jul 03 2014
a(k+1)*a(2^m+k) - a(k)*a(2^m+(k+1)) = 1 for m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Nov 07 2014
a(2^(m+1)+(k+1))*a(2^m+k) - a(2^(m+1)+k)*a(2^m+(k+1)) = 1 for m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Nov 07 2014
a(5*2^k) = 3. a(7*2^k) = 3. a(9*2^k) = 4. a(11*2^k) = 5. a(13*2^k) = 5. a(15*2^k) = 4. In general: a((2j-1)*2^k) = A007306(j), j > 0, k >= 0 (see Adamchuk's comment). - Yosu Yurramendi, Mar 05 2016
a(2^m+2^m'+k') = a(2^m'+k')*(m-m'+1) - a(k'), m >= 0, m' <= m-1, 0 <= k' < 2^m'. - Yosu Yurramendi, Jul 13 2016
From Yosu Yurramendi, Jul 13 2016: (Start)
Let n be a natural number and [b_m b_(m-1) ... b_1 b_0] its binary expansion with b_m=1.
Let L = Sum_{i=0..m} b_i be the number of binary digits equal to 1 (L >= 1).
Let {m_j: j=1..L} be the set of subindices such that b_m_j = 1, j=1..L, and 0 <= m_1 <= m_2 <= ... <= m_L = m.
If L = 1 then c_1 = 1, otherwise let {c_j: j=1..(L-1)} be the set of coefficients such that c_(j) = m_(j+1) - m_j + 1, 1 <= j <= L-1.
Let f be a function defined on {1..L+1} such that f(1) = 0, f(2) = 1, f(j) = c_(j-2)*f(j-1) - f(j-2), 3 <= j <= L+1.
Then a(n) = f(L+1) (see example). (End)
a(n) = A001222(A260443(n)) = A000120(A277020(n)). Also a(n) = A000120(A101624(n-1)) for n >= 1. - Antti Karttunen, Nov 05 2016
(a(n-1) + a(n+1))/a(n) = A037227(n) for n >= 1. - Peter Bala, Feb 07 2017
a(0) = 0; a(3n) = 2*A000360(3n-1); a(3n+1) = 2*A000360(3n) - 1; a(3n+2) = 2*A000360(3n+1) + 1. - M. Jeremie Lafitte (Levitas), Apr 24 2017
From I. V. Serov, Jun 14 2017: (Start)
a(n) = A287896(n-1) - 1*A288002(n-1) for n > 1;
a(n) = A007306(n-1) - 2*A288002(n-1) for n > 1. (End)
From Yosu Yurramendi, Feb 14 2018: (Start)
a(2^(m+2) + 2^(m+1) + k) - a(2^(m+1) + 2^m + k) = 2*a(k), m >= 0, 0 <= k < 2^m.
a(2^(m+2) + 2^(m+1) + k) - a(2^(m+1) + k) = a(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^m + k) = a(k)*(m - floor(log_2(k)) - 1) + a(2^(floor(log_2(k))+1) + k), m >= 0, 0 < k < 2^m, a(2^m) = 1, a(0) = 0. (End)
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = 1, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r < - m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m. (End)
Trow(n) = [card({k XOR (j-k): k=0..j}) for j = 2^(n-1)-1..2^n-2] when regarded as an irregular table (n >= 1). - Peter Luschny, Sep 29 2024
a(n) = A000120(A168081(n)). - Karl-Heinz Hofmann, Jun 16 2025

Extensions

Additional references and comments from Len Smiley, Joshua Zucker, Rick L. Shepherd and Herbert S. Wilf
Typo in definition corrected by Reinhard Zumkeller, Aug 23 2011
Incorrect formula deleted and text edited by Johannes W. Meijer, Feb 07 2013

A005563 a(n) = n*(n+2) = (n+1)^2 - 1.

Original entry on oeis.org

0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600
Offset: 0

Views

Author

Keywords

Comments

Erdős conjectured that n^2 - 1 = k! has a solution if and only if n is 5, 11 or 71 (when k is 4, 5 or 7).
Second-order linear recurrences y(m) = 2y(m-1) + a(n)*y(m-2), y(0) = y(1) = 1, have closed form solutions involving only powers of integers. - Len Smiley, Dec 08 2001
Number of edges in the join of two cycle graphs, both of order n, C_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Let k be a positive integer, M_n be the n X n matrix m_(i,j) = k^abs(i-j) then det(M_n) = (-1)^(n-1)*a(k-1)^(n-1). - Benoit Cloitre, May 28 2002
Also numbers k such that 4*k + 4 is a square. - Cino Hilliard, Dec 18 2003
For each term k, the function sqrt(x^2 + 1), starting with 1, produces an integer after k iterations. - Gerald McGarvey, Aug 19 2004
a(n) mod 3 = 0 if and only if n mod 3 > 0: a(A008585(n)) = 2; a(A001651(n)) = 0; a(n) mod 3 = 2*(1-A079978(n)). - Reinhard Zumkeller, Oct 16 2006
a(n) is the number of divisors of a(n+1) that are not greater than n. - Reinhard Zumkeller, Apr 09 2007
Nonnegative X values of solutions to the equation X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(n+2). - Mohamed Bouhamida, Nov 06 2007
Sequence allows us to find X values of the equation: X + (X + 1)^2 + (X + 2)^3 = Y^2. To prove that X = n^2 + 2n: Y^2 = X + (X + 1)^2 + (X + 2)^3 = X^3 + 7*X^2 + 15X + 9 = (X + 1)(X^2 + 6X + 9) = (X + 1)*(X + 3)^2 it means: (X + 1) must be a perfect square, so X = k^2 - 1 with k>=1. we can put: k = n + 1, which gives: X = n^2 + 2n and Y = (n + 1)(n^2 + 2n + 3). - Mohamed Bouhamida, Nov 12 2007
From R. K. Guy, Feb 01 2008: (Start)
Toads and Frogs puzzle:
This is also the number of moves that it takes n frogs to swap places with n toads on a strip of 2n + 1 squares (or positions, or lily pads) where a move is a single slide or jump, illustrated for n = 2, a(n) = 8 by
T T - F F
T - T F F
T F T - F
T F T F -
T F - F T
- F T F T
F - T F T
F F T - T
F F - T T
I was alerted to this by the Holton article, but on consulting Singmaster's sources, I find that the puzzle goes back at least to 1867.
Probably the first to publish the number of moves for n of each animal was Edouard Lucas in 1883. (End)
a(n+1) = terms of rank 0, 1, 3, 6, 10 = A000217 of A120072 (3, 8, 5, 15). - Paul Curtz, Oct 28 2008
Row 3 of array A163280, n >= 1. - Omar E. Pol, Aug 08 2009
Final digit belongs to a periodic sequence: 0, 3, 8, 5, 4, 5, 8, 3, 0, 9. - Mohamed Bouhamida, Sep 04 2009 [Comment edited by N. J. A. Sloane, Sep 24 2009]
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod f(x)); here n belongs to N. There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z. However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x. The present sequence represents the non-integer part when the polynomial is x^2 + x + 1 and x = sqrt(2), f(x+n*f(x))/f(x) = A056108(n) + a(n)*sqrt(2). - A.K. Devaraj, Sep 18 2009
For n >= 1, a(n) is the number for which 1/a(n) = 0.0101... (A000035) in base (n+1). - Rick L. Shepherd, Sep 27 2009
For n > 0, continued fraction [n, 1, n] = (n+1)/a(n); e.g., [6, 1, 6] = 7/48. - Gary W. Adamson, Jul 15 2010
Starting (3, 8, 15, ...) = binomial transform of [3, 5, 2, 0, 0, 0, ...]; e.g., a(3) = 15 = (1*3 + 2*5 +1*2) = (3 + 10 + 2). - Gary W. Adamson, Jul 30 2010
a(n) is essentially the case 0 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_0(n) = 2*n-n^2 and a(n) = -P_0(n+2). See also A067998 and for the case k=1 A080956. - Peter Luschny, Jul 08 2011
a(n) is the maximal determinant of a 2 X 2 matrix with integer elements from {1, ..., n+1}, so the maximum determinant of a 2x2 matrix with integer elements from {1, ..., 5} = 5^2 - 1 = a(4) = 24. - Aldo González Lorenzo, Oct 12 2011
Using four consecutive triangular numbers t1, t2, t3 and t4, plot the points (0, 0), (t1, t2), and (t3, t4) to create a triangle. Twice the area of this triangle are the numbers in this sequence beginning with n = 1 to give 8. - J. M. Bergot, May 03 2012
Given a particle with spin S = n/2 (always a half-integer value), the quantum-mechanical expectation value of the square of the magnitude of its spin vector evaluates to = S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012
Twice the harmonic mean [H(x, y) = (2*x*y)/(x + y)] of consecutive triangular numbers A000217(n) and A000217(n+1). - Raphie Frank, Sep 28 2012
Number m such that floor(sqrt(m)) = floor(m/floor(sqrt(m))) - 2 for m > 0. - Takumi Sato, Oct 10 2012
The solutions of equation 1/(i - sqrt(j)) = i + sqrt(j), when i = (n+1), j = a(n). For n = 1, 2 + sqrt(3) = 3.732050.. = A019973. For n = 2, 3 + sqrt(8) = 5.828427... = A156035. - Kival Ngaokrajang, Sep 07 2013
The integers in the closed form solution of a(n) = 2*a(n-1) + a(m-2)*a(n-2), n >= 2, a(0) = 0, a(1) = 1 mentioned by Len Smiley, Dec 08 2001, are m and -m + 2 where m >= 3 is a positive integer. - Felix P. Muga II, Mar 18 2014
Let m >= 3 be a positive integer. If a(n) = 2*a(n-1) + a(m-2) * a(n-2), n >= 2, a(0) = 0, a(1) = 1, then lim_{n->oo} a(n+1)/a(n) = m. - Felix P. Muga II, Mar 18 2014
For n >= 4 the Szeged index of the wheel graph W_n (with n + 1 vertices). In the Sarma et al. reference, Theorem 2.7 is incorrect. - Emeric Deutsch, Aug 07 2014
If P_{k}(n) is the n-th k-gonal number, then a(n) = t*P_{s}(n+2) - s*P_{t}(n+2) for s=t+1. - Bruno Berselli, Sep 04 2014
For n >= 1, a(n) is the dimension of the simple Lie algebra A_n. - Wolfdieter Lang, Oct 21 2015
Finding all positive integers (n, k) such that n^2 - 1 = k! is known as Brocard's problem, (see A085692). - David Covert, Jan 15 2016
For n > 0, a(n) mod (n+1) = a(n) / (n+1) = n. - Torlach Rush, Apr 04 2016
Conjecture: When using the Sieve of Eratosthenes and sieving (n+1..a(n)), with divisors (1..n) and n>0, there will be no more than a(n-1) composite numbers. - Fred Daniel Kline, Apr 08 2016
a(n) mod 8 is periodic with period 4 repeating (0,3,0,7), that is a(n) mod 8 = 5/2 - (5/2) cos(n*Pi) - sin(n*Pi/2) + sin(3*n*Pi/2). - Andres Cicuttin, Jun 02 2016
Also for n > 0, a(n) is the number of times that n-1 occurs among the first (n+1)! terms of A055881. - R. J. Cano, Dec 21 2016
The second diagonal of composites (the only prime is number 3) from the right on the Klauber triangle (see Kival Ngaokrajang link), which is formed by taking the positive integers and taking the first 1, the next 3, the following 5, and so on, each centered below the last. - Charles Kusniec, Jul 03 2017
Also the number of independent vertex sets in the n-barbell graph. - Eric W. Weisstein, Aug 16 2017
Interleaving of A000466 and A033996. - Bruce J. Nicholson, Nov 08 2019
a(n) is the number of degrees of freedom in a triangular cell for a Raviart-Thomas or Nédélec first kind finite element space of order n. - Matthew Scroggs, Apr 22 2020
From Muge Olucoglu, Jan 19 2021: (Start)
For n > 1, a(n-2) is the maximum number of elements in the second stage of the Quine-McCluskey algorithm whose minterms are not covered by the functions of n bits. At n=3, we have a(3-2) = a(1) = 1*(1+2) = 3 and f(A,B,C) = sigma(0,1,2,5,6,7).
.
0 1 2 5 6 7
+---------------
*(0,1)| X X
(0,2)| X X
(1,5)| X X
*(2,6)| X X
*(5,7)| X X
(6,7)| X X
.
*: represents the elements that are covered. (End)
1/a(n) is the ratio of the sum of the first k odd numbers and the sum of the next n*k odd numbers. - Melvin Peralta, Jul 15 2021
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {1, 2n}]. - Magus K. Chu, Sep 09 2022
Number of diagonals parallel to an edge in a regular (2*n+4)-gon (cf. A367204). - Paolo Xausa, Nov 21 2023
For n >= 1, also the number of minimum cyclic edge cuts in the (n+2)-trapezohedron graph. - Eric W. Weisstein, Nov 21 2024
For n >= 1, a(n) is the sum of the interior angles of a polygon with n+2 sides, in radians, multiplied by (n+2)/Pi. - Stuart E Anderson, Aug 06 2025

Examples

			G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see index under Toads and Frogs Puzzle.
  • Martin Gardner, Perplexing Puzzles and Tantalizing Teasers, p. 21 (for "The Dime and Penny Switcheroo").
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • Derek Holton, Math in School, 37 #1 (Jan 2008) 20-22.
  • Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Vol. 2 (1883) 141-143.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(3-x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A000290(n+1) - 1.
A002378(a(n)) = A002378(n)*A002378(n+1); e.g., A002378(15)=240=12*20. - Charlie Marion, Dec 29 2003
a(n) = A067725(n)/3. - Zerinvary Lajos, Mar 06 2007
a(n) = Sum_{k=1..n} A144396(k). - Zerinvary Lajos, May 11 2007
a(n) = A134582(n+1)/4. - Zerinvary Lajos, Feb 01 2008
A143053(a(n)) = A000290(n+1), for n > 0. - Reinhard Zumkeller, Jul 20 2008
a(n) = Real((n+1+i)^2). - Gerald Hillier, Oct 12 2008
A053186(a(n)) = 2*n. - Reinhard Zumkeller, May 20 2009
a(n) = (n! + (n+1)!)/(n-1)!, n > 0. - Gary Detlefs, Aug 10 2009
a(n) = floor(n^5/(n^3+1)) with offset 1 (a(1)=0). - Gary Detlefs, Feb 11 2010
a(n) = a(n-1) + 2*n + 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = 3/4. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^(n-1)*(cos(x))^3), for n > 0. - Francesco Daddi, Aug 02 2011
a(n) = A002378(n) + floor(sqrt(A002378(n))); pronic number + its root. - Fred Daniel Kline, Sep 16 2011
a(n-1) = A008833(n) * A068310(n) for n > 1. - Reinhard Zumkeller, Nov 26 2011
G.f.: U(0) where U(k) = -1 + (k+1)^2/(1 - x/(x + (k+1)^2/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = 15*C(n+4,3)*C(n+4,5)/(C(n+4,2)*C(n+4,4)). - Gary Detlefs, Aug 05 2013
a(n) = (n+2)!/((n-1)! + n!), n > 0. - Ivan N. Ianakiev, Nov 11 2013
a(n) = 3*C(n+1,2) - C(n,2) for n >= 0. - Felix P. Muga II, Mar 11 2014
a(n) = (A016742(n+1) - 4)/4 for n >= 0. - Felix P. Muga II, Mar 11 2014
a(-2 - n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
A253607(a(n)) = 1. - Reinhard Zumkeller, Jan 05 2015
E.g.f.: x*(x + 3)*exp(x). - Ilya Gutkovskiy, Jun 03 2016
For n >= 1, a(n^2 + n - 2) = a(n-1) * a(n). - Miko Labalan, Oct 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4. - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2.
Product_{n>=1} (1 - 1/a(n)) = -sqrt(2)*sin(sqrt(2)*Pi)/Pi. (End)
a(n) = A000290(n+2) - n*2. See Bounded Squares illustration. - Leo Tavares, Oct 05 2021
From Leo Tavares, Oct 10 2021: (Start)
a(n) = A008585(n) + 2*A000217(n-1). See Trapezoids illustration.
2*A005563 = A054000(n+1). See Trapagons illustration.
a(n) = 2*A000217(n) + n. (End)
a(n) = (n+2)!!/(n-2)!! for n > 1. - Jacob Szlachetka, Jan 02 2022

Extensions

Partially edited by Joerg Arndt, Mar 11 2010
More terms from N. J. A. Sloane, Aug 01 2010

A059841 Period 2: Repeat [1,0]. a(n) = 1 - (n mod 2); Characteristic function of even numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Alford Arnold, Feb 25 2001

Keywords

Comments

When viewed as a triangular array, the row sum values are 0 1 1 1 2 3 3 3 4 5 5 5 6 ... (A004525).
This is the r=0 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Successive binomial transforms of this sequence: A011782, A007051, A007582, A081186, A081187, A081188, A081189, A081190, A060531, A081192.
Characteristic function of even numbers: a(A005843(n))=1, a(A005408(n))=0. - Reinhard Zumkeller, Sep 29 2008
This sequence is the Euler transformation of A185012. - Jason Kimberley, Oct 14 2011
a(n) is the parity of n+1. - Omar E. Pol, Jan 17 2012
Read as partial sequences, we get to A000975. - Jon Perry, Nov 11 2014
Elementary Cellular Automata rule 77 produces this sequence. See Wolfram, Weisstein and Index links below. - Robert Price, Jan 30 2016
Column k = 1 of A051159. - John Keith, Jun 28 2021
When read as a constant: decimal expansion of 10/99, binary expansion of 2/3. - Jason Bard, Aug 25 2025

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 0;
  1, 0, 1, 0;
  1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1, 0;
  1, 0, 1, 0, 1, 0, 1, 0;
  1, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0;
  ...
		

Crossrefs

One's complement of A000035 (essentially the same, but shifted once).
Cf. A033999 (first differences), A008619 (partial sums), A004525, A011782 (binomial transf.), A000975.
Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), this sequence (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), A082784 (g=7).

Programs

  • Haskell
    a059841 n = (1 -) . (`mod` 2)
    a059841_list = cycle [1,0]
    -- Reinhard Zumkeller, May 05 2012, Dec 30 2011
    
  • Magma
    [0^(n mod 2): n in  [0..100]]; // Vincenzo Librandi, Nov 09 2014
    
  • Maple
    seq(1-modp(n,2), n=0..150); # Muniru A Asiru, Apr 05 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x^2), {x, 0, 104}], x] (* or *)
    Array[1/2 + (-1)^#/2 &, 105, 0] (* Michael De Vlieger, Feb 19 2019 *)
    Table[QBinomial[n, 1, -1], {n, 1, 74}] (* John Keith, Jun 28 2021 *)
    PadRight[{},120,{1,0}] (* Harvey P. Dale, Mar 06 2023 *)
  • PARI
    a(n)=(n+1)%2; \\ or 1-n%2 as in NAME.
    
  • PARI
    A059841(n)=!bittest(n,0) \\ M. F. Hasler, Jan 13 2012
    
  • Python
    def A059841(n): return 1 - (n & 1) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 - A000035(n). - M. F. Hasler, Jan 13 2012
From Paul Barry, Mar 11 2003: (Start)
G.f.: 1/(1-x^2).
E.g.f.: cosh(x).
a(n) = (n+1) mod 2.
a(n) = 1/2 + (-1)^n/2. (End)
Additive with a(p^e) = 1 if p = 2, 0 otherwise.
a(n) = Sum_{k=0..n} (-1)^k*A038137(n, k). - Philippe Deléham, Nov 30 2006
a(n) = Sum_{k=1..n} (-1)^(n-k) for n > 0. - William A. Tedeschi, Aug 05 2011
E.g.f.: cosh(x) = 1 + x^2/(Q(0) - x^2); Q(k) = 8k + 2 + x^2/(1 + (2k + 1)*(2k + 2)/Q(k + 1)); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
E.g.f.: cosh(x) = 1/2*Q(0); Q(k) = 1 + 1/(1 - x^2/(x^2 + (2k + 1)*(2k + 2)/Q(k + 1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
E.g.f.: cosh(x) = E(0)/(1-x) where E(k) = 1 - x/(1 - x/(x - (2*k+1)*(2*k+2)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = A000035(n+1) = A008619(n) - A110654(n). - Wesley Ivan Hurt, Jul 20 2013

Extensions

Better definition from M. F. Hasler, Jan 13 2012
Reinhard Zumkeller's Sep 29 2008 description added as a secondary name by Antti Karttunen, May 03 2022

A011655 Period 3: repeat [0, 1, 1].

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

A binary m-sequence: expansion of reciprocal of x^2+x+1 (mod 2).
A Chebyshev transform of the Jacobsthal numbers A001045: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Feb 16 2004
This is the r = 1 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
This is the Fibonacci sequence (A000045) modulo 2. - Stephen Jordan (sjordan(AT)mit.edu), Sep 10 2007
For n > 0: a(n) = A084937(n-1) mod 2. - Reinhard Zumkeller, Dec 16 2007
This is also the Lucas numbers (A000032) mod 2. In general, this is the parity of any Lucas sequence associated with any pair (P,Q) when P and Q are odd; i.e., a(n) = U_n(P,Q) mod 2 = V_n(P,Q) mod 2. See Ribenboim. - Rick L. Shepherd, Feb 07 2009
Starting with offset 1: (1, 1, 0, 1, 1, 0, ...) = INVERTi transform of the tribonacci sequence A001590 starting (1, 2, 3, 6, 11, 20, 37, ...). - Gary W. Adamson, May 04 2009
From Reinhard Zumkeller, Nov 30 2009: (Start)
Characteristic function of numbers coprime to 3.
a(n) = 1 - A079978(n); a(A001651(n)) = 1; a(A008585(n)) = 0;
A000212(n) = Sum_{k=0..n} a(k)*(n-k). (End)
Sum_{k>0} a(k)/k/2^k = log(7)/3. - Jaume Oliver Lafont, Jun 01 2010
The sequence is the principal Dirichlet character of the reduced residue system mod 3 (the other is A102283). Associated Dirichlet L-functions are L(2,chi) = Sum_{n>=1} a(n)/n^2 = 4*Pi^2/27 = A214549, and L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.157536... = -(psi''(1/3) + psi''(2/3))/54 where psi'' is the tetragamma function. [Jolley eq 309 and arXiv:1008.2547, L(m = 3, r = 1, s)]. - R. J. Mathar, Jul 15 2010
a(n+1), n >= 0, is the sequence of the row sums of the Riordan triangle A158454. - Wolfdieter Lang, Dec 18 2010
Removing the first two elements and keeping the offset at 0, this is a periodic sequence (1, 0, 1, 1, 0, 1, ...). Its INVERTi transform is (1, -1, 2, -2, 2, -2, ...) with period (2,-2). - Gary W. Adamson, Jan 21 2011
Column k = 1 of triangle in A198295. - Philippe Deléham, Jan 31 2012
The set of natural numbers, A000027: (1, 2, 3, ...); is the INVERT transform of the signed periodic sequence (1, 1, 0, -1, -1, 0, 1, 1, 0, ...). - Gary W. Adamson, Apr 28 2013
Any integer sequence s(n) = |s(n-1) - s(n-2)| (equivalently, max(s(n-1), s(n-2)) - min(s(n-1), s(n-2))) for n > i + 1 with s(i) = j and s(i+1) = k, where j and k are not both 0, is or eventually becomes a multiple of this sequence, namely, the sequence repeat gcd(j, k), gcd(j, k), 0 (at some offset). In particular, if j and k are coprime, then s(n) is or eventually becomes this sequence (see, e.g., A110044). - Rick L. Shepherd, Jan 21 2014
For n >= 1, a(n) is also the characteristic function for rational g-adic integers (+n/3)A001651).%20See%20the%20definition%20in%20the%20Mahler%20reference,%20p.%207%20and%20also%20p.%2010.%20-%20_Wolfdieter%20Lang">g and also (-n/3)_g for all integers g >= 2 without a factor 3 (A001651). See the definition in the Mahler reference, p. 7 and also p. 10. - _Wolfdieter Lang, Jul 11 2014
Characteristic function for A007908(n+1) being divisible by 3. a(n) = bit flipped A007908(n+1) (mod 3) = bit flipped A079978(n). - Wolfdieter Lang, Jun 12 2017
Also Jacobi or Kronecker symbol (n/9) (or (n/9^e) for all e >= 1). - Jianing Song, Jul 09 2018
The binomial trans. is 0, 1, 3, 6, 11, 21, 42, 85, 171, 342,.. (see A024495). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = x + x^2 + x^4 + x^5 + x^7 + x^8 + x^10 + x^11 + x^13 + x^14 + x^16 + x^17 + ...
		

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
  • K. Mahler, p-adic numbers and their functions, 2nd ed., Cambridge University press, 1981.
  • Paulo Ribenboim, The Little Book of Big Primes. Springer-Verlag, NY, 1991, p. 46. [Rick L. Shepherd, Feb 07 2009]

Crossrefs

Partial sums of A057078 give A011655(n+1).
Cf. A035191 (Mobius transform), A001590, A002487, A049347.
Cf. A000027, A000045, A004523 (partial sums), A057078 (first differences).
Cf. A007908, A079978 (bit flipped).
Cf. A011656 - A011751 for other binary m-sequences.
Cf. A002264.

Programs

Formula

G.f.: (x + x^2) / (1 - x^3) = Sum_{k>0} (x^k - x^(3*k)).
G.f.: x / (1 - x / (1 + x / (1 + x / (1 - 2*x / (1 + x))))). - Michael Somos, Apr 02 2012
a(n) = a(n+3) = a(-n), a(3*n) = 0, a(3*n + 1) = a(3*n + 2) = 1 for all n in Z.
a(n) = (1/2)*( (-1)^(floor((2n + 4)/3)) + 1 ). - Mario Catalani (mario.catalani(AT)unito.it), Oct 22 2003
a(n) = Fibonacci(n) mod 2. - Paul Barry, Nov 12 2003
a(n) = (2/3)*(1 - cos(2*Pi*n/3)). - Ralf Stephan, Jan 06 2004
a(n) = 1 - a(n-1)*a(n-2), a(n) = n for n < 2. - Reinhard Zumkeller, Feb 28 2004
a(n) = 2*(1 - T(n, -1/2))/3 with Chebyshev's polynomials T(n, x) of the first kind; see A053120. - Wolfdieter Lang, Oct 18 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*A001045(n-2k)/(n-k). - Paul Barry, Oct 31 2004
a(n) = A002487(n) mod 2. - Paul Barry, Jan 14 2005
From Bruce Corrigan (scentman(AT)myfamily.com), Aug 08 2005: (Start)
a(n) = n^2 mod 3.
a(n) = (1/3)*(2 - (r^n + r^(2*n))) where r = (-1 + sqrt(-3))/2. (End)
From Michael Somos, Sep 23 2005: (Start)
Euler transform of length 3 sequence [ 1, -1, 1].
Moebius transform is length 3 sequence [ 1, 0, -1].
Multiplicative with a(3^e) = 0^e, a(p^e) = 1 otherwise. (End)
From Hieronymus Fischer, Jun 27 2007: (Start)
a(n) = (4/3)*(|sin(Pi*(n-2)/3)| + |sin(Pi*(n-1)/3)|)*|sin(Pi*n/3)|.
a(n) = ((n+1) mod 3 + 1) mod 2 = (1 - (-1)^(n - 3*floor((n+1)/3)))/2. (End)
a(n) = 2 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008
a(2*n+1) = a(n+1) XOR a(n), a(2*n) = a(n), a(1) = 1, a(0) = 0. - Reinhard Zumkeller, Dec 27 2008
Sum_{n>=1} a(n)/n^s = (1-1/3^s)*Riemann_zeta(s), s > 1. - R. J. Mathar, Jul 31 2010
a(n) = floor((4*n-5)/3) mod 2. - Gary Detlefs, May 15 2011
a(n) = (a(n-1) - a(n-2))^2 with a(0) = 0, a(1) = 1. - Francesco Daddi, Aug 02 2011
Convolution of A040000 with A049347. - R. J. Mathar, Jul 21 2012
G.f.: Sum_{k>0} x^A001651(k). - L. Edson Jeffery, Dec 05 2012
G.f.: x/(G(0) - x^2) where G(k) = 1 - x/(x + 1/(1 - x/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 15 2013
For the general case: The characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, with m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 3). - Wesley Ivan Hurt, Jun 22 2013
a(n) = A000035(A000032(n)) = A000035(A000045(n)). - Omar E. Pol, Oct 28 2013
a(n) = (-n mod 3)^((n-1) mod 3). - Wesley Ivan Hurt, Apr 16 2015
a(n) = (2/3) * (1 - sin((Pi/6) * (4*n + 3))) for n >= 0. - Werner Schulte, Jul 20 2017
a(n) = a(n-1) XOR a(n-2) with a(0) = 0, a(1) = 1. - Chunqing Liu, Dec 18 2022
a(n) = floor((n+2)/3) - floor(n/3) = A002264(n+2) - A002264(n). - Aaron J Grech, Jul 30 2024
E.g.f.: 2*(exp(x) - exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Mar 30 2025
Dirichlet g.f.: zeta(s)*(1-1/3^s). - R. J. Mathar, Aug 10 2025

Extensions

Better name from Omar E. Pol, Oct 28 2013

A069905 Number of partitions of n into 3 positive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0

Views

Author

N. J. A. Sloane, May 04 2002

Keywords

Comments

Number of binary bracelets of n beads, 3 of them 0. For n >= 3, a(n-3) is the number of binary bracelets of n beads, 3 of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
Also number of partitions of n-3 into parts 1, 2, and 3. - Joerg Arndt, Sep 05 2013
Number of incongruent triangles with integer sides that have perimeter 2n-3 (see the Jordan et al. link). - Freddy Barrera, Aug 18 2018
Number of ordered triples (x,y,z) of nonnegative integers such that x+y+z=n and xDennis P. Walsh, Apr 19 2019
Number of incongruent triangles formed from any 3 vertices of a regular n-gon. - Frank M Jackson, Sep 11 2022
Also a(n-3) for n > 2, otherwise 0 is the number of incongruent scalene triangles formed from the vertices of a regular n-gon. - Frank M Jackson, Nov 27 2022

Examples

			G.f. = x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + 10*x^11 + ...
		

References

  • Ross Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 410.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

Crossrefs

Another version of A001399, which is the main entry for this sequence.
Cf. A005044, A008284, A008615, A026810 (4 positive parts).

Programs

  • GAP
    List([0..70],n->NrPartitions(n,3)); # Muniru A Asiru, May 17 2018
    
  • Haskell
    a069905 n = a069905_list !! n
    a069905_list = scanl (+) 0 a008615_list
    -- Reinhard Zumkeller, Apr 28 2014
    
  • Magma
    [(n^2+6) div 12: n in [0..70]]; // Vincenzo Librandi, Oct 14 2015
    
  • Maple
    A069905 := n->round(n^2/12): seq(A069905(n), n=0..70);
  • Mathematica
    a[ n_]:= Round[ n^2 / 12] (* Michael Somos, Sep 04 2013 *)
    CoefficientList[Series[x^3/((1-x)(1-x^2)(1-x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 14 2015 *)
    Drop[LinearRecurrence[{1,1,0,-1,-1,1}, Append[Table[0,{5}],1],70],2] (* Robert A. Russell, May 17 2018 *)
  • PARI
    a(n) = floor((n^2+6)/12);  \\ Washington Bomfim, Jul 03 2012
    
  • PARI
    my(x='x+O('x^70)); concat([0, 0, 0], Vec(x^3/((1-x)*(1-x^2)*(1-x^3)))) \\ Altug Alkan, Oct 14 2015
    
  • SageMath
    [round(n^2/12) for n in range(70)] # G. C. Greubel, Apr 03 2019

Formula

G.f.: x^3/((1-x)*(1-x^2)*(1-x^3)) = x^3/((1-x)^3*(1+x+x^2)*(1+x)).
a(n) = round(n^2/12).
a(n) = floor((n^2+6)/12). - Washington Bomfim, Jul 03 2012
a(-n) = a(n). - Michael Somos, Sep 04 2013
a(n) = a(n-1) + A008615(n-1) for n > 0. - Reinhard Zumkeller, Apr 28 2014
Let n = 6k + m. Then a(n) = n^2/12 + a(m) - m^2/12. Also, a(n) = 3*k^2 + m*k + a(m). Example: a(35) = a(6*5 + 5) = 35^2/12 + a(5) - 5^2/12 = 102 = 3*5^2 + 5*5 + a(5). - Gregory L. Simay, Oct 13 2015
a(n) = a(n-1) +a(n-2) -a(n-4) -a(n-5) +a(n-6), n>5. - Wesley Ivan Hurt, Oct 16 2015
a(n) = A008284(n,3). - Robert A. Russell, May 13 2018
a(n) = A005044(2*n) = A005044(2*n - 3). - Freddy Barrera, Aug 18 2018
a(n) = floor((n^2+k)/12) for all integers k such that 3 <= k <= 7. - Giacomo Guglieri, Apr 03 2019
From Wesley Ivan Hurt, Apr 19 2019: (Start)
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} 1.
a(n) = Sum_{i=1..floor(n/3)} floor((n-i)/2) - i + 1. (End)
Sum_{n>=3} 1/a(n) = 15/4 + Pi^2/18 - Pi/(2*sqrt(3)) + tanh(Pi/(2*sqrt(3))) * Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (8*exp(-x/2)*cos(sqrt(3)*x/2) + (3*x^2 + 3*x - 8)*cosh(x) + (3*x^2 + 3*x + 1)*sinh(x))/36. - Stefano Spezia, Apr 05 2023
From Ridouane Oudra, Dec 12 2024: (Start)
a(n) = (n^2 + 2*gcd(n,3) - 3*gcd(n,2))/12.
a(n) = (A198442(n) + A079978(n))/3.
a(n) = A000212(n) - A002620(n).
a(n) = A008133(n+1) - A307018(n+1). (End)
a(n) = (A309511(n) + A309513(n))/3. - Ray Chandler, Mar 13 2025

A127093 Triangle read by rows: T(n,k)=k if k is a divisor of n; otherwise, T(n,k)=0 (1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 2, 0, 4, 0, 0, 0, 8, 1, 0, 3, 0, 0, 0, 0, 0, 9, 1, 2, 0, 0, 5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007, Apr 04 2007

Keywords

Comments

Sum of terms in row n = sigma(n) (sum of divisors of n).
Euler's derivation of A127093 in polynomial form is in his proof of the formula for Sigma(n): (let S=Sigma, then Euler proved that S(n) = S(n-1) + S(n-2) - S(n-5) - S(n-7) + S(n-12) + S(n-15) - S(n-22) - S(n-26), ...).
[Young, pp. 365-366], Euler begins, s = (1-x)*(1-x^2)*(1-x^3)*... = 1 - x - x^2 + x^5 + x^7 - x^12 ...; log s = log(1-x) + log(1-x^2) + log(1-x^3) ...; differentiating and then changing signs, Euler has t = x/(1-x) + 2x^2/(1-x^2) + 3x^3/(1-x^3) + 4x^4/(1-x^4) + 5x^5/(1-x^5) + ...
Finally, Euler expands each term of t into a geometric series, getting A127093 in polynomial form: t =
x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + ...
+ 2x^2 + 2x^4 + 2x^6 + 2x^8 + ...
+ 3x^3 + 3x^6 + ...
+ 4x^4 + 4x^8 + ...
+ 5x^5 + ...
+ 6x^6 + ...
+ 7x^7 + ...
+ 8x^8 + ...
T(n,k) is the sum of all the k-th roots of unity each raised to the n-th power. - Geoffrey Critzer, Jan 02 2016
From Davis Smith, Mar 11 2019: (Start)
For n > 1, A020639(n) is the leftmost term, other than 0 or 1, in the n-th row of this array. As mentioned in the Formula section, the k-th column is period k: repeat [k, 0, 0, ..., 0], but this also means that it's the characteristic function of the multiples of k multiplied by k. T(n,1) = A000012(n), T(n,2) = 2*A059841(n), T(n,3) = 3*A079978(n), T(n,4) = 4*A121262(n), T(n,5) = 5*A079998(n), and so on.
The terms in the n-th row, other than 0, are the factors of n. If n > 1 and for every k, 1 <= k < n, T(n,k) = 0 or 1, then n is prime. (End)
From Gary W. Adamson, Aug 07 2019: (Start)
Row terms of the triangle can be used to calculate E(n) in A002654): (1, 1, 0, 1, 2, 0, 0, 1, 1, 2, ...), and A004018, the number of points in a square lattice on the circle of radius sqrt(n), A004018: (1, 4, 4, 0, 4, 8, 0, 0, 4, ...).
As to row terms in the triangle, let E(n) of even terms = 0,
E(integers of the form 4*k - 1 = (-1), and E(integers of the form 4*k + 1 = 1.
Then E(n) is the sum of the E(n)'s of the factors of n in the triangle rows. Example: E(10) = Sum: ((E(1) + E(2) + E(5) + E(10)) = ((1 + 0 + 1 + 0) = 2, matching A002654(10).
To get A004018, multiply the result by 4, getting A004018(10) = 8.
The total numbers of lattice points = 4r^2 = E(1) + ((E(2))/2 + ((E(3))/3 + ((E(4))/4 + ((E(5))/5 + .... Since E(even integers) are zero, E(integers of the form (4*k - 1)) = (-1), and E(integers of the form (4*k + 1)) = (+1); we are left with 4r^2 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - ..., which is approximately equal to Pi(r^2). (End)
T(n,k) is also the number of parts in the partition of n into k equal parts. - Omar E. Pol, May 05 2020

Examples

			T(8,4) = 4 since 4 divides 8.
T(9,3) = 3 since 3 divides 9.
First few rows of the triangle:
  1;
  1, 2;
  1, 0, 3;
  1, 2, 0, 4;
  1, 0, 0, 0, 5;
  1, 2, 3, 0, 0, 6;
  1, 0, 0, 0, 0, 0, 7;
  1, 2, 0, 4, 0, 0, 0, 8;
  1, 0, 3, 0, 0, 0, 0, 0, 9;
  ...
		

References

  • David Wells, "Prime Numbers, the Most Mysterious Figures in Math", John Wiley & Sons, 2005, appendix.
  • L. Euler, "Discovery of a Most Extraordinary Law of the Numbers Concerning the Sum of Their Divisors"; pp. 358-367 of Robert M. Young, "Excursions in Calculus, An Interplay of the Continuous and the Discrete", MAA, 1992. See p. 366.

Crossrefs

Reversal = A127094
Cf. A027750.
Cf. A000012 (the first column), A020639, A059841 (the second column when multiplied by 2), A079978 (the third column when multiplied by 2), A079998 (the fifth column when multiplied by 5), A121262 (the fourth column when multiplied by 4).

Programs

  • Excel
    mod(row()-1;column()) - mod(row();column()) + 1 - Mats Granvik, Aug 31 2007
    
  • Haskell
    a127093 n k = a127093_row n !! (k-1)
    a127093_row n = zipWith (*) [1..n] $ map ((0 ^) . (mod n)) [1..n]
    a127093_tabl = map a127093_row [1..]
    -- Reinhard Zumkeller, Jan 15 2011
    
  • Maple
    A127093:=proc(n,k) if type(n/k, integer)=true then k else 0 fi end:
    for n from 1 to 16 do seq(A127093(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 20 2007
  • Mathematica
    t[n_, k_] := k*Boole[Divisible[n, k]]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
    Table[ SeriesCoefficient[k*x^k/(1 - x^k), {x, 0, n}], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 14 2015 *)
  • PARI
    trianglerows(n) = for(x=1, n, for(k=1, x, if(x%k==0, print1(k, ", "), print1("0, "))); print(""))
    /* Print initial 9 rows of triangle as follows: */
    trianglerows(9) \\ Felix Fröhlich, Mar 26 2019

Formula

k-th column is composed of "k" interspersed with (k-1) zeros.
Let M = A127093 as an infinite lower triangular matrix and V = the harmonic series as a vector: [1/1, 1/2, 1/3, ...]. then M*V = d(n), A000005: [1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ...]. M^2 * V = A060640: [1, 5, 7, 17, 11, 35, 15, 49, 34, 55, ...]. - Gary W. Adamson, May 10 2007
T(n,k) = ((n-1) mod k) - (n mod k) + 1 (1 <= k <= n). - Mats Granvik, Aug 31 2007
T(n,k) = k * 0^(n mod k). - Reinhard Zumkeller, Jan 15 2011
G.f.: Sum_{k>=1} k * x^k * y^k/(1-x^k) = Sum_{m>=1} x^m * y/(1 - x^m*y)^2. - Robert Israel, Aug 08 2016
T(n,k) = Sum_{d|k} mu(k/d)*sigma(gcd(n,d)). - Ridouane Oudra, Apr 05 2025

A024036 a(n) = 4^n - 1.

Original entry on oeis.org

0, 3, 15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303, 16777215, 67108863, 268435455, 1073741823, 4294967295, 17179869183, 68719476735, 274877906943, 1099511627775, 4398046511103, 17592186044415, 70368744177663, 281474976710655
Offset: 0

Views

Author

Keywords

Comments

This sequence is the normalized length per iteration of the space-filling Peano-Hilbert curve. The curve remains in a square, but its length increases without bound. The length of the curve, after n iterations in a unit square, is a(n)*2^(-n) where a(n) = 4*a(n-1)+3. This is the sequence of a(n) values. a(n)*(2^(-n)*2^(-n)) tends to 1, the area of the square where the curve is generated, as n increases. The ratio between the number of segments of the curve at the n-th iteration (A015521) and a(n) tends to 4/5 as n increases. - Giorgio Balzarotti, Mar 16 2006
Numbers whose base-4 representation is 333....3. - Zerinvary Lajos, Feb 03 2007
From Eric Desbiaux, Jun 28 2009: (Start)
It appears that for a given area, a square n^2 can be divided into n^2+1 other squares.
It's a rotation and zoom out of a Cartesian plan, which creates squares with side
= sqrt( (n^2) / (n^2+1) ) --> A010503|A010532|A010541... --> limit 1,
and diagonal sqrt(2*sqrt((n^2)/(n^2+1))) --> A010767|... --> limit A002193.
(End)
Also the total number of line segments after the n-th stage in the H tree, if 4^(n-1) H's are added at the n-th stage to the structure in which every "H" is formed by 3 line segments. A164346 (the first differences of this sequence) gives the number of line segments added at the n-th stage. - Omar E. Pol, Feb 16 2013
a(n) is the cumulative number of segment deletions in a Koch snowflake after (n+1) iterations. - Ivan N. Ianakiev, Nov 22 2013
Inverse binomial transform of A005057. - Wesley Ivan Hurt, Apr 04 2014
For n > 0, a(n) is one-third the partial sums of A002063(n-1). - J. M. Bergot, May 23 2014
Also the cyclomatic number of the n-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 18 2017

Examples

			G.f. = 3*x + 15*x^2 + 63*x^3 + 255*x^4 + 1023*x^5 + 4095*x^6 + ...
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.

Crossrefs

Programs

  • Haskell
    a024036 = (subtract 1) . a000302
    a024036_list = iterate ((+ 3) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A024036:=n->4^n-1; seq(A024036(n), n=0..30); # Wesley Ivan Hurt, Apr 04 2014
  • Mathematica
    Array[4^# - 1 &, 50, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
    (* Start from Eric W. Weisstein, Sep 19 2017 *)
    Table[4^n - 1, {n, 0, 20}]
    4^Range[0, 20] - 1
    LinearRecurrence[{5, -4}, {0, 3}, 20]
    CoefficientList[Series[3 x/(1 - 5 x + 4 x^2), {x, 0, 20}], x]
    (* End *)
  • PARI
    for(n=0, 100, print1(4^n-1, ", ")) \\ Felix Fröhlich, Jul 04 2014
  • Sage
    [gaussian_binomial(2*n,1, 2) for n in range(21)] # Zerinvary Lajos, May 28 2009
    
  • Sage
    [stirling_number2(2*n+1, 2) for n in range(21)] # Zerinvary Lajos, Nov 26 2009
    

Formula

a(n) = 3*A002450(n). - N. J. A. Sloane, Feb 19 2004
G.f.: 3*x/((-1+x)*(-1+4*x)) = 1/(-1+x) - 1/(-1+4*x). - R. J. Mathar, Nov 23 2007
E.g.f.: exp(4*x) - exp(x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A000051(n)*A000225(n). - Reinhard Zumkeller, Feb 14 2009
A079978(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2009
a(n) = A179857(A000225(n)), for n > 0; a(n) > A179857(m), for m < A000225(n). - Reinhard Zumkeller, Jul 31 2010
a(n) = 4*a(n-1) + 3, with a(0) = 0. - Vincenzo Librandi, Aug 01 2010
A000120(a(n)) = 2*n. - Reinhard Zumkeller, Feb 07 2011
a(n) = (3/2)*A020988(n). - Omar E. Pol, Mar 15 2012
a(n) = (Sum_{i=0..n} A002001(i)) - 1 = A178789(n+1) - 3. - Ivan N. Ianakiev, Nov 22 2013
a(n) = n*E(2*n-1,1)/B(2*n,1), for n > 0, where E(n,x) denotes the Euler polynomials and B(n,x) the Bernoulli polynomials. - Peter Luschny, Apr 04 2014
a(n) = A000302(n) - 1. - Sean A. Irvine, Jun 18 2019
Sum_{n>=1} 1/a(n) = A248721. - Amiram Eldar, Nov 13 2020
a(n) = A080674(n) - A002450(n). - Elmo R. Oliveira, Dec 02 2023

Extensions

More terms Wesley Ivan Hurt, Apr 04 2014
Showing 1-10 of 122 results. Next