A000361 From a fractal set of positive Lebesgue measure, a self-replicating tiling with holes, the 4-reptile following the 2-reptile of Paul Levy.
1, 0, 2, 1, 1, 2, 5, 0, 10, 6, 3, 2, 19, 2, 10, 1, 5, 10, 89, 1, 170, 28, 7, 2, 71, 12, 170, 5, 25, 10, 21, 0, 42, 26, 51, 10, 1251, 38, 682, 6, 301, 170, 5833, 3, 2730, 120, 15, 2, 271, 56
Offset: 0
References
- Croft, Falconer and Guy, Unsolved Problems in Geometry, Springer-Verlag, 1991; Problem of least k such that there exists a non-simply-connected k-reptile.
- M. Jeremie Lafitte (Levitas), Sur l'Effet Noa`h en Geometrie, rapport a l'INPI, Mars 1995.
Links
- M. Jeremie Lafitte (Levitas), Ensembles Auto-Similaires d'Interieur Non-Vide, Preprint Hiver 1997, Chaire de Geometrie, Departement de Mathematiques, Ecole Polytechnique Federale de Lausanne, Switzerland. [Cached copy, with permission]
- M. Jeremie Lafitte (Levitas), Fractal triangle underlying A000360, A000361, A000876
- M. Jeremie Lafitte (Levitas), Notes on A000360, A000361, A000876 [Based on a latex file sent by M. Jeremie Lafitte (Levitas) to NJAS in 1995 - see file of emails below]
- M. Jeremie Lafitte (Levitas), Latex source for the pdf file [Sent by M. Jeremie Lafitte (Levitas) to NJAS in 1995 - see file of emails below]
- M. Jeremie Lafitte (Levitas) and N. J. A. Sloane, Emails, 1995-2007 (The three sequences mentioned in this correspondence are now A000360, A000361, A000876)
Comments