A340031
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the j-th row of triangle A127093, where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1, 1, 2, 0, 4, 1, 0, 3, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1,2], [1];
[1,0,3], [1,2], [1], [1];
[1,2,0,4], [1,0,3], [1,2], [1,2], [1], [1], [1];
[1,0,0,0,5],[1,2,0,4],[1,0,3],[1,0,3],[1,2],[1,2],[1,2],[1],[1],[1],[1],[1];
[...
Written as an irregular tetrahedron the first five slices are:
[1],
-------
[1, 2],
[1],
----------
[1, 0, 3],
[1, 2],
[1],
[1];
-------------
[1, 2, 0, 4],
[1, 0, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------------
[1, 0, 0, 0, 5],
[1, 2, 0, 4],
[1, 0, 3],
[1, 0, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The following table formed by three zones shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A127093 | | | 1 | 1 2 | 1 0 3 |
| I | A127093 | | | 1 | 1 2 | 1 0 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O | A127093 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A338156 but here, in the lower zone, every row is A127093 instead of A027750.
.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A221649,
A221650,
A237593,
A245095,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340011,
A340032,
A340035,
A340061.
Original entry on oeis.org
1, 2, 1, 3, 0, 1, 4, 0, 2, 1, 5, 0, 0, 0, 1, 6, 0, 0, 3, 2, 1, 7, 0, 0, 0, 0, 0, 1, 8, 0, 0, 0, 4, 0, 2, 1, 9, 0, 0, 0, 0, 0, 3, 0, 1, 10, 0, 0, 0, 0, 5, 0, 0, 2, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle are:
1;
2, 1;
3, 0, 1;
4, 0, 2, 1;
5, 0, 0, 0, 1;
6, 0, 0, 3, 2, 1;
...
-
[n mod (k-n-1) - (n+1) mod (k-n-1) + 1: k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 08 2021
-
Table[Mod[n, k-n-1] - Mod[n+1, k-n-1] +1, {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 08 2021 *)
-
flatten([[n%(k-n-1) - (n+1)%(k-n-1) + 1 for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Mar 08 2021
A340011
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the j-th row of triangle A127093 but with every term multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 3, 1, 2, 2, 1, 2, 0, 4, 1, 0, 3, 2, 4, 3, 1, 0, 0, 0, 5, 1, 2, 0, 4, 2, 0, 6, 3, 6, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 2, 4, 0, 8, 3, 0, 9, 5, 10, 7, 1, 0, 0, 0, 0, 0, 7, 1, 2, 3, 0, 0, 6, 2, 0, 0, 0, 10, 3, 6, 0, 12, 5, 0, 15, 7, 14, 11, 1, 2, 0, 4, 0, 0, 0, 8
Offset: 1
Triangle begins:
[1];
[1, 2], [1];
[1, 0, 3], [1, 2], [2];
[1, 2, 0, 4], [1, 0, 3], [2, 4], [3];
[1, 0, 0, 0, 5], [1, 2, 0, 4], [2, 0, 6], [3, 6], [5];
[...
Row sums give A066186.
Written as an irregular tetrahedron the first five slices are:
--
1;
-----
1, 2,
1;
--------
1, 0, 3,
1, 2,
2;
-----------
1, 2, 0, 4,
1, 0, 3,
2, 4,
3;
--------------
1, 0, 0, 0, 5,
1, 2, 0, 4,
2, 0, 6,
3, 6,
5;
--------------
Row sums give A339106.
The following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A127093 | | | 1 | 1 2 | 1 0 3 |
| I | A127093 | | | 1 | 1 2 | 1 0 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O | A127093 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| C | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| O | - | | | 2 | 2 4 | 2 0 6 |
| N | - | | | | 3 | 3 6 |
| D | - | | | | | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
This lower zone of the table is a condensed version of the "divisors" zone.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A221649,
A221650,
A237593,
A245095,
A302246,
A302247,
A336811,
A336812,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340031,
A340032,
A340035,
A340061.
A340032
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of the row m of triangle A127093, with 1 <= m <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 3, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6
Offset: 1
Triangle begins:
1;
1, 1, 2;
1, 1, 1, 2, 1, 0, 3;
1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 2, 0, 4;
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 3, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5;
...
Written as an irregular tetrahedron the first five slices are:
1;
--
1,
1, 2;
-----
1,
1,
1, 2,
1, 0, 3;
--------
1,
1,
1,
1, 2,
1, 2,
1, 0, 3,
1, 2, 0, 4;
-----------
1,
1,
1,
1,
1,
1, 2,
1, 2,
1, 2,
1, 0, 3,
1, 0, 3,
1, 2, 0, 4,
1, 0, 0, 0, 5;
--------------
...
The slices of the tetrahedron appear in the upper zone of the following table (formed by three zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| D | A127093 | | | | | 1 |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 | | | | 1 | 1 2 |
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 | | | 1 | 1 2 | 1 0 3 |
| S | A127093 | | | 1 | 1 2 | 1 0 3 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| |
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
| A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| R | | | | 3 | 3 1 | 3 1 1 |
| T | | | | | 2 2 | 2 2 1 |
| I | | | | | 4 | 4 1 |
| T | | | | | | 3 2 |
| I | | | | | | 5 |
| O | | | | | | |
| N | | | | | | |
| S | | | | | | |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A340035 but here, in the upper zone, every row is A127093 instead of A027750.
Also the above table is the table of A340031 upside down.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A245095,
A221649,
A221650,
A237593,
A302246,
A302247,
A336811,
A337209,
A338156,
A339106,
A339258,
A339278,
A339304,
A340031,
A340061.
A127098
Triangle T(n,m) read by rows: product A127093 * A127094.
Original entry on oeis.org
1, 5, 2, 10, 0, 3, 21, 2, 8, 4, 26, 0, 0, 0, 5, 50, 2, 3, 18, 12, 6, 50, 0, 0, 0, 0, 0, 7, 85, 2, 8, 4, 32, 0, 16, 8, 91, 0, 3, 0, 0, 0, 27, 0, 9, 130, 2, 0, 0, 5, 50, 0, 0, 20, 10, 122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 210, 2, 11, 22, 12, 6, 72, 0, 48, 36, 24, 12, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 250, 2, 0, 0, 0, 0, 7, 98, 0
Offset: 1
First few rows of the triangle are:
1;
5, 2;
10, 0, 3;
21, 2, 8, 4;
26, 0, 0, 0, 5;
50, 2, 3, 18, 12, 6;
50, 0, 0, 0, 0, 0, 7;
85, 2, 8, 4, 32, 0, 16, 8;
-
A127093 := proc(n,m) if m> n or m<1 or n < 1 then 0 ; elif (n mod m) = 0 then m; else 0 ; fi; end:
A127094 := proc(n,m) A127093(n,n-m+1) ; end: A127098 := proc(n,m) add( A127093(n,k)*A127094(k,m),k=1..n) ; end:
for n from 1 to 30 do for m from 1 to n do printf("%d,",A127098(n,m)) ; od: od: # R. J. Mathar, Mar 02 2009
Original entry on oeis.org
1, 5, 2, 10, 0, 3, 21, 10, 0, 4, 26, 0, 0, 0, 5, 50, 20, 15, 0, 0, 6, 50, 0, 0, 0, 0, 0, 7, 85, 42, 0, 20, 0, 0, 0, 8, 91, 0, 30, 0, 0, 0, 0, 0, 9, 130, 52, 0, 0, 25, 0, 0, 0, 0, 10, 122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 210, 100, 63, 40, 0, 30, 0, 0, 0, 0, 0, 12, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
First few rows of the triangle are:
1;
5, 2;
10, 0, 3;
21, 10, 0, 4;
26, 0, 0, 0, 5;
50, 20, 15, 0, 0, 6;
50, 0, 0, 0, 0, 0, 7;
...
-
A127093 := proc(n,m) if n mod m = 0 then m; else 0 ; fi; end:
A126988 := proc(n,k) if n mod k = 0 then n/k; else 0; fi; end:
A127097 := proc(n,m) add( A127093(n,j)*A126988(j,m),j=m..n) ; end:
for n from 1 to 15 do for m from 1 to n do printf("%d,",A127097(n,m)) ; od: od: # R. J. Mathar, Aug 18 2009
Original entry on oeis.org
1, 3, 2, 4, 0, 3, 7, 6, 0, 4, 6, 0, 0, 0, 5, 12, 8, 9, 0, 0, 6, 8, 0, 0, 0, 0, 0, 7, 15, 14, 0, 12, 0, 0, 0, 8, 13, 0, 12, 0, 0, 0, 0, 0, 9, 18, 12, 0, 0, 15, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 28, 24, 21, 16, 0, 18, 0, 0, 0, 0, 0, 12, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 24, 16, 0, 0
Offset: 1
First few rows of the triangle are:
1;
3, 2;
4, 0, 3;
7, 6, 0, 4;
6, 0, 0, 0, 5;
12, 8, 9, 0, 0, 6;
8, 0, 0, 0, 0, 0, 7;
15, 14, 0, 12, 0, 0, 0, 8;
13, 0, 12, 0, 0, 0, 0, 0, 9;
18, 12, 0, 0, 15, 0, 0, 0, 0, 10;
...
Original entry on oeis.org
1, 0, 2, -1, 0, 3, -1, 0, 0, 4, -3, 0, 0, 0, 5, 0, -2, 0, 0, 0, 6, -5, 0, 0, 0, 0, 0, 7, -2, -2, 0, 0, 0, 0, 0, 8, -3, 0, -3, 0, 0, 0, 0, 0, 9, 0, -6, 0, 0, 0, 0, 0, 0, 0, 10
Offset: 1
First few rows of the triangle:
1;
0, 2;
-1, 0, 3;
-1, 0, 0, 4;
-3, 0, 0, 0, 5;
0, -2, 0, 0, 0, 6;
-5, 0, 0, 0, 0, 0, 7;
...
Original entry on oeis.org
1, 3, 2, 4, 3, 3, 7, 6, 4, 4, 6, 5, 5, 5, 5, 12, 11, 9, 6, 6, 6, 8, 7, 7, 7, 7, 7, 7, 15, 14, 12, 12, 8, 8, 8, 8, 13, 12, 12, 9, 9, 9, 9, 9, 9, 18, 17, 15, 15, 15, 10, 10, 10, 10, 10
Offset: 1
First few rows of the triangle are:
1;
3, 2;
4, 3, 3;
7, 6, 4, 4;
6, 5, 5, 5, 5;
12, 11, 9, 6, 6, 6;
8, 7, 7, 7, 7, 7, 7;
15, 14, 12, 12, 8, 8, 8, 8;
...
A253951
A partial double sum of integers: a(n) = Sum_{x=1..n} Sum_{y=1..n} T(x,y), where T is the matrix product: T = A051731*A127093*Transpose(A054524) and T(n,1)=0 (* stands for matrix multiplication).
Original entry on oeis.org
0, 1, 5, 9, 20, 23, 42, 52, 69, 77, 113, 119, 165, 177, 190, 214, 279, 291, 366, 379, 399, 422, 517, 533, 599, 625, 679, 701, 829, 846, 986, 1035, 1069, 1105, 1137, 1164, 1339, 1380, 1417, 1449, 1646, 1674, 1883, 1918, 1955, 2008, 2239, 2274, 2420, 2462, 2515, 2559, 2827, 2874, 2929
Offset: 1
-
with(LinearAlgebra):
N:= 200:
A051731:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, 1, 0),shape=triangular[lower]):
A127093:= Matrix(N,N,(n,k) -> `if`(n mod k = 0, k, 0), shape=triangular[lower]):
A054524T:= Matrix(N,N,(k,n) -> `if`(n mod k = 0, numtheory:-mobius(k),0), shape=triangular[upper]):
T:= A051731 . A127093 . A054524T:
a[1]:= 0:
for n from 2 to N do
a[n]:= a[n-1] + add(T[i,n],i=1..n) + add(T[n,j],j=2..n-1)
od:
seq(a[n],n=1..N); # Robert Israel, Jan 20 2015
-
nn = 55;
Z = Table[ If[ Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}];
A = Table[ If[ Mod[n, k] == 0, k, 0], {n, nn}, {k, nn}];
B = Table[ If[ Mod[n, k] == 0, MoebiusMu[k], 0], {n, nn}, {k, nn}];
MatrixForm[T = Z.A.Transpose[B]];
T[[All, 1]] = 0;
a = Table[ Total[ T[[1 ;; n, 1 ;; n]], 2], {n, nn}]
(* shows a graph *) Show[ ListLinePlot[a], ListLinePlot[ Accumulate[ MangoldtLambda[ Range[ nn]]]]]
Showing 1-10 of 60 results.
Comments