A120072 Numerator triangle for hydrogen spectrum rationals.
3, 8, 5, 15, 3, 7, 24, 21, 16, 9, 35, 2, 1, 5, 11, 48, 45, 40, 33, 24, 13, 63, 15, 55, 3, 39, 7, 15, 80, 77, 8, 65, 56, 5, 32, 17, 99, 6, 91, 21, 3, 4, 51, 9, 19, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21, 143, 35, 5, 1, 119, 1, 95, 5, 7, 11, 23
Offset: 2
Examples
For the rational triangle see W. Lang link. Numerator triangle begins as: 3; 8, 5; 15, 3, 7; 24, 21, 16, 9; 35, 2, 1, 5, 11; 48, 45, 40, 33, 24, 13; 63, 15, 55, 3, 39, 7, 15; 80, 77, 8, 65, 56, 5, 32, 17; 99, 6, 91, 21, 3, 4, 51, 9, 19;
Links
- G. C. Greubel, Rows n = 2..50 of the triangle, flattened
- Wolfdieter Lang, First ten rows, rationals and more.
- T. Lyman, The Spectrum of Hydrogen in the Region of Extremely Short Wave-Lengths, The Astrophysical Journal, 23 (April 1906), 181-210. - _Paul Curtz_, May 30 2017
Crossrefs
Programs
-
Magma
[Numerator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
-
Mathematica
Table[1/n^2 - 1/m^2, {m,2,12}, {n,m-1}]//Flatten//Numerator (* Jean-François Alcover, Sep 16 2013 *)
-
SageMath
def A120072(n,k): return numerator(1/k^2 - 1/n^2) flatten([[A120072(n,k) for k in range(1,n)] for n in range(2,19)]) # G. C. Greubel, Apr 24 2023
Formula
a(m,n) = numerator(r(m,n)) with r(m,n) = 1/n^2 - 1/m^2, m>=2, n=1..m-1.
The g.f.s for the columns n=1,..,10 of triangle r(m,n) = a(m, n) / A120073(m, n), m >= 2, 1 <= n <= m-1, are given in the W. Lang link.
Comments