cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120073 Denominator triangle for hydrogen spectrum rationals.

Original entry on oeis.org

4, 9, 36, 16, 16, 144, 25, 100, 225, 400, 36, 9, 12, 144, 900, 49, 196, 441, 784, 1225, 1764, 64, 64, 576, 64, 1600, 576, 3136, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 100, 25, 900, 400, 100, 225, 4900, 1600, 8100, 121, 484, 1089, 1936, 3025, 4356, 5929, 7744, 9801, 12100
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The corresponding numerator triangle is A120072.
See A120072 and A120070 for more details.

Examples

			For the rational triangle see W. Lang link.
Denominator triangle begins as:
    4;
    9,  36;
   16,  16, 144;
   25, 100, 225,  400;
   36,   9,  12,  144,  900;
   49, 196, 441,  784, 1225, 1764;
   64,  64, 576,   64, 1600,  576, 3136;
   81, 324,  81, 1296, 2025,  324, 3969, 5184;
  100,  25, 900,  400,  100,  225, 4900, 1600, 8100;
		

Crossrefs

Programs

  • Magma
    [Denominator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Table[(1/n^2 - 1/m^2)//Denominator, {m,2,15}, {n,m-1}]//Flatten (* Jean-François Alcover, Sep 16 2013 *)
  • SageMath
    def A120073(n,k): return denominator(1/k^2 - 1/n^2)
    flatten([[A120073(n,k) for k in range(1,n)] for n in range(2,19)]) # G. C. Greubel, Apr 24 2023

Formula

a(m,n) = denominator(r(m,n)) with r(m,n) = 1/n^2 - 1/m^2, m>=2, n=1..m-1.