A120073 Denominator triangle for hydrogen spectrum rationals.
4, 9, 36, 16, 16, 144, 25, 100, 225, 400, 36, 9, 12, 144, 900, 49, 196, 441, 784, 1225, 1764, 64, 64, 576, 64, 1600, 576, 3136, 81, 324, 81, 1296, 2025, 324, 3969, 5184, 100, 25, 900, 400, 100, 225, 4900, 1600, 8100, 121, 484, 1089, 1936, 3025, 4356, 5929, 7744, 9801, 12100
Offset: 2
Examples
For the rational triangle see W. Lang link. Denominator triangle begins as: 4; 9, 36; 16, 16, 144; 25, 100, 225, 400; 36, 9, 12, 144, 900; 49, 196, 441, 784, 1225, 1764; 64, 64, 576, 64, 1600, 576, 3136; 81, 324, 81, 1296, 2025, 324, 3969, 5184; 100, 25, 900, 400, 100, 225, 4900, 1600, 8100;
Links
- G. C. Greubel, Rows n = 2..50 of the triangle, flattened
- Wofdieter Lang, First ten rows, rationals and more.
Programs
-
Magma
[Denominator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
-
Mathematica
Table[(1/n^2 - 1/m^2)//Denominator, {m,2,15}, {n,m-1}]//Flatten (* Jean-François Alcover, Sep 16 2013 *)
-
SageMath
def A120073(n,k): return denominator(1/k^2 - 1/n^2) flatten([[A120073(n,k) for k in range(1,n)] for n in range(2,19)]) # G. C. Greubel, Apr 24 2023
Formula
a(m,n) = denominator(r(m,n)) with r(m,n) = 1/n^2 - 1/m^2, m>=2, n=1..m-1.
Comments