A120077 Denominators of row sums of rational triangle A120072/A120073.
4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 2167695039654144, 1548353599752960, 221193371393280, 117011293467045120
Offset: 2
Examples
The rationals A120076(m)/a(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ... ).
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 2..1150
Programs
-
Magma
A120077:= func< n | Denominator( (&+[1/k^2: k in [1..n]]) -1/n) >; [A120077(n): n in [2..30]]; // G. C. Greubel, Apr 25 2023
-
Mathematica
Table[Denominator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 25 2023 *)
-
PARI
a(n) = denominator(sum(j=1,n-1,1/j^2-1/n^2)) \\ Jeppe Stig Nielsen, Aug 18 2019
-
PARI
a(n) = denominator(sum(j=1,n,1/j^2) - 1/n) \\ Jeppe Stig Nielsen, Aug 18 2019
-
SageMath
def A120077(n): return denominator(harmonic_number(n,2) - 1/n) [A120077(n) for n in range(2,31)] # G. C. Greubel, Apr 25 2023
Formula
a(n) = denominator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m>=2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link under A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).
Extensions
a(21)-a(23) from Jeppe Stig Nielsen, Aug 18 2019
Comments