cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 48 results. Next

A204994 Least k such that n divides A120070(k+1), the k-th difference between distinct squares.

Original entry on oeis.org

1, 2, 1, 2, 3, 5, 6, 2, 10, 14, 15, 5, 21, 27, 4, 9, 36, 31, 45, 14, 8, 65, 66, 7, 41, 90, 13, 27, 105, 23, 120, 12, 19, 152, 11, 31, 171, 189, 26, 18, 210, 40, 231, 65, 17, 275, 276, 16, 85, 96, 43, 90, 351, 61, 24, 33, 53, 434, 435, 23
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)

A142717 First (leftmost) odd term in the n-th row of triangle A120070.

Original entry on oeis.org

3, 5, 15, 21, 35, 45, 63, 77, 99, 117, 143, 165, 195, 221, 255, 285, 323, 357, 399, 437, 483, 525, 575, 621, 675, 725, 783, 837, 899, 957, 1023, 1085, 1155, 1221, 1295, 1365, 1443, 1517, 1599, 1677, 1763, 1845, 1935, 2021, 2115, 2205, 2303, 2397, 2499, 2597
Offset: 1

Views

Author

Paul Curtz, Sep 26 2008

Keywords

Comments

Also: Records sequence of A100181.
The last (rightmost) term in the n-th row of triangle A120070 is A005408(n).

Examples

			The odd terms of A120070 build the irregular triangle
  3;
  5;
  15,7;
  21,9;
  35,27,11;
  45,33,13;
  63,55,39,15;
The leftmost column defines this sequence.
		

Crossrefs

Programs

  • Mathematica
    A142717[n_]:=(n+1)^2-If[OddQ[n],1,4];Array[A142717,100] (* or *)
    LinearRecurrence[{2,0,-2,1},{3,5,15,21},100] (* Paolo Xausa, Dec 05 2023 *)

Formula

First differences: a(n+1)-a(n) = A142954(n).
From R. J. Mathar, Oct 24 2008: (Start)
a(n) = (n+1)^2-1 = A000466((n+1)/2) if n odd.
a(n) = (n+1)^2-4 = A078371(n/2-1) if n even.
a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: x(3-x+5x^2-3x^3)/((1+x)(1-x)^3). (End)

Extensions

Edited and extended by R. J. Mathar, Oct 24 2008

A143785 Antidiagonal sums of the triangle A120070.

Original entry on oeis.org

3, 8, 20, 36, 63, 96, 144, 200, 275, 360, 468, 588, 735, 896, 1088, 1296, 1539, 1800, 2100, 2420, 2783, 3168, 3600, 4056, 4563, 5096, 5684, 6300, 6975, 7680, 8448, 9248, 10115, 11016, 11988, 12996, 14079, 15200, 16400, 17640, 18963, 20328, 21780, 23276
Offset: 1

Views

Author

Paul Curtz, Sep 01 2008

Keywords

Comments

Let b(n) be the sequence (0,0,0,3,8,20,36,...), with offset 0. Then b(n) is the number of triples (w,x,y) having all terms in {0,...,n} and w < range{w,x,y}. - Clark Kimberling, Jun 11 2012
Consider a(n) with two 0's prepended and offset 1. Call the new sequence b(n) and consider the partitions of n into two parts (p,q). Then b(n) represents the sum of all the products (p + q) * (q - p) where p <= q. - Wesley Ivan Hurt, Apr 12 2018

Examples

			First diagonal 3 = 3.
Second diagonal 8 = 8.
Third diagonal 5+15 = 20.
Fourth diagonal 24+12 = 36.
		

Crossrefs

Cf. A035006, A099721 (bisections).

Programs

  • Magma
    [(n+2)*(2*n^2+4*n-(-1)^n+1)/8: n in [1..50]]; // Vincenzo Librandi, Jan 22 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (3 + 2 x + x^2)/((1 + x)^2*(x - 1)^4), {x, 0, 44}], x] (* Michael De Vlieger, Dec 22 2017 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {3, 8, 20, 36, 63, 96}, 60] (* Vincenzo Librandi, Jan 22 2018 *)
  • PARI
    Vec(x*(3+2*x+x^2)/((1+x)^2*(x-1)^4) + O(x^50)) \\ Colin Barker, May 07 2016
    

Formula

a(n+1) - a(n) = A032438(n+2).
a(n) = A006918(n-2) + 2*A006918(n-1) + 3*A006918(n). - R. J. Mathar, Jul 01 2011
G.f.: x*(3+2*x+x^2) / ( (1+x)^2*(x-1)^4 ). - R. J. Mathar, Jul 01 2011
a(n) = (n+2)*(2*n^2 + 4*n - (-1)^n + 1)/8. - Ilya Gutkovskiy, May 07 2016
From Colin Barker, May 07 2016: (Start)
a(n) = (n^3 + 4*n^2 + 4*n)/4 for n even.
a(n) = (n^3 + 4*n^2 + 5*n + 2)/4 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 6. (End)
a(n) = Sum_{k=1..n+1} floor((n+1)*k/2). - Wesley Ivan Hurt, Apr 01 2017
a(n) = (n+2)*floor((n+1)^2/4) ( = (n+2)*A002620(n+1) ) for n > 0. - Heinrich Ludwig, Dec 22 2017
E.g.f.: e^(-x) * (-2 + x + e^(2*x)*(2 + 19*x + 14*x^2 + 2*x^3))/8. - Iain Fox, Dec 29 2017

A141620 First differences of A120070.

Original entry on oeis.org

5, -3, 10, -3, -5, 17, -3, -5, -7, 26, -3, -5, -7, -9, 37, -3, -5, -7, -9, -11, 50, -3, -5, -7, -9, -11, -13, 65, -3, -5, -7, -9, -11, -13, -15, 82, -3, -5, -7, -9, -11, -13, -15, -17, 101, -3, -5, -7, -9, -11, -13, -15, -17, -19, 122, -3, -5, -7, -9, -11, -13, -15, -17, -19, -21
Offset: 0

Views

Author

Paul Curtz, Aug 23 2008

Keywords

Crossrefs

Cf. A120070. Essentially the same as A133128.

Formula

a(n) = mix (from 2) n^2+1 (or A002522(n+2)), (ever from -3) successive -A005408.
a(n) = ((A^2+3*A-2*n)*(-A^2+A+2*(n+4))-(B^2+3*B-2*(n-1))*(-B^2+B+2*(n+3)))/4, where A = floor((sqrt(8*n+9)-1)/2) and B = floor((sqrt(8*(n-1)+9)-1)/2) = floor((sqrt(8*n+1)-1)/2). - Luce ETIENNE, May 31 2017

A133128 Triangle of first differences of A120070 with a leftmost column of A002522.

Original entry on oeis.org

2, 5, -3, 10, -3, -5, 17, -3, -5, -7, 26, -3, -5, -7, -9, 37, -3, -5, -7, -9, -11, 50, -3, -5, -7, -9, -11, -13, 65, -3, -5, -7, -9, -11, -13, -15, 82, -3, -5, -7, -9, -11, -13, -15, -17, 101, -3, -5, -7, -9, -11, -13, -15, -17, -19, 122, -3, -5, -7, -9, -11, -13, -15, -17, -19, -21, 145, -3, -5, -7, -9, -11, -13, -15, -17, -19, -21, -23, 170, -3, -5, -7, -9, -11, -13
Offset: 0

Views

Author

Paul Curtz, Aug 27 2008

Keywords

Comments

The flattened triangle is essentially the same as A141620.

Examples

			The triangle starts
2;
5, -3;
10,-3,-5;
17,-3,-5,-7;
26,-3,-5,-7,-9;
		

Programs

  • Maple
    A133128 := proc(n,m) if m>= 1 then -2*m-1 ; else (n+1)^2+1 ; fi; end: seq(seq(A133128(n,m),m=0..n),n=0..15) ; # R. J. Mathar, Nov 22 2009

Formula

T(n,0) = A002522(n+1).
T(n,m) = -2m-1, m>0 .
sum_{m=0..n} T(n,m) = 2 (row sums).
T(n,n) = -A005408(n), n>0.

Extensions

Edited and extended by R. J. Mathar, Nov 22 2009

A141616 Even terms in A120070.

Original entry on oeis.org

8, 12, 24, 16, 32, 20, 48, 40, 24, 60, 48, 28, 80, 72, 56, 32, 96, 84, 64, 36, 120, 112, 96, 72, 40, 140, 128, 108, 80, 44, 168, 160, 144, 120, 88, 48, 192, 180, 160, 132, 96, 52, 224, 216, 200, 176, 144, 104, 56, 252, 240, 220, 192, 156, 112, 60, 288, 280, 264, 240, 208, 168, 120, 64, 320, 308, 288
Offset: 1

Views

Author

Paul Curtz, Aug 23 2008

Keywords

Comments

All terms are multiples of 4.
Row length L = Ceiling(n/2 - 1), thus the smallest value of n in A120070 to produce even terms is n = 3. - Michael De Vlieger, Apr 14 2016

Examples

			Irregular triangle:
n    Even values of A120070(n)
3    8
4    12
5    24    16
6    32    20
7    48    40    24
8    60    48    28
9    80    72    56    32
10   96    84    64    36
11  120   112    96    72    40
12  140   128   108    80    44
...
		

Programs

Extensions

More terms from Michael De Vlieger, Apr 14 2016

A100181 Odd terms in A120070.

Original entry on oeis.org

3, 5, 15, 7, 21, 9, 35, 27, 11, 45, 33, 13, 63, 55, 39, 15, 77, 65, 45, 17, 99, 91, 75, 51, 19
Offset: 1

Views

Author

Paul Curtz, Aug 29 2008

Keywords

Extensions

Edited by N. J. A. Sloane, Aug 30 2008

A141595 Binomial transform of A120070.

Original entry on oeis.org

3, 11, 24, 57, 137, 310, 672, 1445, 3135, 6834, 14797, 31605, 66642, 139500, 291697, 611517, 1285388, 2702278, 5664348, 11813505, 24503911, 50606865, 104273395, 214794252, 442965900, 914940122, 1891691613, 3910617099, 8072908510, 16626013425, 34146007356, 69946108176
Offset: 0

Views

Author

Paul Curtz, Aug 21 2008

Keywords

Crossrefs

Cf. A120070.

Programs

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A120070(k). - G. C. Greubel, Sep 15 2024

Extensions

Terms a(8) onward added by G. C. Greubel, Sep 15 2024

A164561 Triangle with elements A120070(m,n)/A120072(m,n) read by rows, m>=2, 1<=n

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 16, 27, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 16, 1, 4, 1, 1, 1, 9, 1, 1, 9, 1, 1, 1, 16, 1, 4, 25, 16, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 27, 128, 1, 108, 1, 16, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 4, 1, 16, 49, 4, 1, 16, 1, 4, 1, 1, 1, 27, 1
Offset: 2

Views

Author

Paul Curtz, Aug 16 2009

Keywords

Examples

			The triangle starts in row m=2 as
1;
1, 1;
1, 4, 1;
1, 1, 1, 1;
1, 16, 27, 4, 1;
1, 1, 1, 1, 1, 1;
1, 4, 1, 16, 1, 4, 1;
		

Programs

Extensions

Edited and extended by R. J. Mathar, Aug 19 2009

A166492 Table of numerators of A120070(n,m)/A002260(n,m), 1 <= m < n.

Original entry on oeis.org

3, 8, 5, 15, 6, 7, 24, 21, 16, 9, 35, 16, 9, 5, 11, 48, 45, 40, 33, 24, 13, 63, 30, 55, 12, 39, 14, 15, 80, 77, 24, 65, 56, 15, 32, 17, 99, 48, 91, 21, 15, 32, 51, 9, 19, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21, 143, 70, 45, 32, 119, 18, 95, 10, 7, 22, 23, 168, 165, 160, 153, 144
Offset: 2

Views

Author

Paul Curtz, Oct 15 2009

Keywords

Comments

Numerators of the fractions (n+m)*(n-m)/m.
The numerical values are between A120070(n,m) and A120072(n,m), see A164561.
If we "flatten" the table (enumerate the sequence starting at 1 instead of using the double index), the positions where a common factor is removed from the numerator A120070 and denominator A002260 are at 5, 12, 13, etc., as given by A076537.

Crossrefs

Cf. A129326.

Programs

Extensions

Edited and extended by R. J. Mathar, Oct 21 2009
Showing 1-10 of 48 results. Next