cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A204999 a(n) = (1/n)*A204998(n).

Original entry on oeis.org

3, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.
Positions of 3's seem to be given by a subsequence of A104777. - Antti Karttunen, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)
  • PARI
    A204999(n) = { my(d); for(k=sqrtint(1+n), oo, for(j=1,k-1,if(!((d=(k^2)-(j^2))%n),return(d/n),if(dAntti Karttunen, Sep 28 2018

Formula

a(n) = (A204996(n)-A204997(n))/n.

Extensions

More terms from Antti Karttunen, Sep 28 2018

A204996 Least k^2 such that n divides k^2-j^2 for some j

Original entry on oeis.org

4, 9, 4, 9, 9, 16, 16, 9, 25, 36, 36, 16, 49, 64, 16, 25, 81, 81, 100, 36, 25, 144, 144, 25, 100, 196, 36, 64, 225, 64, 256, 36, 49, 324, 36, 81, 361, 400, 64, 49, 441, 100, 484, 144, 49, 576, 576, 49, 196, 225, 100, 196, 729, 144, 64, 81, 121, 900, 900, 64
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)

A204997 The square j^2 such that n divides k^2-j^2>0, where k is the least positive integer for which such a j exists.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 9, 1, 16, 16, 25, 4, 36, 36, 1, 9, 64, 9, 81, 16, 4, 100, 121, 1, 25, 144, 9, 36, 196, 4, 225, 4, 16, 256, 1, 9, 324, 324, 25, 9, 400, 16, 441, 100, 4, 484, 529, 1, 49, 25, 49, 144, 676, 36, 9, 25, 64, 784, 841, 4
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)

A204998 a(n) = k^2 - j^2, where (k^2,j^2) is the least pair of distinct squares for which n divides their difference.

Original entry on oeis.org

3, 8, 3, 8, 5, 12, 7, 8, 9, 20, 11, 12, 13, 28, 15, 16, 17, 72, 19, 20, 21, 44, 23, 24, 75, 52, 27, 28, 29, 60, 31, 32, 33, 68, 35, 72, 37, 76, 39, 40, 41, 84, 43, 44, 45, 92, 47, 48, 147, 200, 51, 52, 53, 108, 55, 56, 57, 116, 59, 60, 61, 124, 63, 64, 65, 132, 67, 68, 69, 140, 71, 72, 73, 148, 75, 76, 77, 156, 79, 80, 81, 164
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)
  • PARI
    A204998(n) = { my(d); for(k=sqrtint(1+n), oo, for(j=1,k-1,if(!((d=(k^2)-(j^2))%n),return(d),if(dAntti Karttunen, Sep 28 2018

Formula

a(n) = A204996(n) - A204997(n).

Extensions

More terms from Antti Karttunen, Sep 28 2018

A204905 Least k such that n divides k^2-j^2 for some j satisfying 1<=j

Original entry on oeis.org

2, 3, 2, 3, 3, 4, 4, 3, 5, 6, 6, 4, 7, 8, 4, 5, 9, 9, 10, 6, 5, 12, 12, 5, 10, 14, 6, 8, 15, 8, 16, 6, 7, 18, 6, 9, 19, 20, 8, 7, 21, 10, 22, 12, 7, 24, 24, 7, 14, 15, 10, 14, 27, 12, 8, 9, 11, 30, 30, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			1 divides 2^2-1^2, so a(1)=2
2 divides 3^2-1^2, so a(2)=3
3 divides 2^2-a^2, so a(3)=2
4 divides 3^2-a^2, so a(4)=3
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = n^2; z1 = 600; z2 = 60;
    Table[s[n], {n, 1, 30}]     (* A000290 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A120070 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]   (* A204994 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]       (* A204905 *)
    Table[j[n], {n, 1, z2}]       (* A204995 *)
    Table[s[k[n]], {n, 1, z2}]    (* A204996 *)
    Table[s[j[n]], {n, 1, z2}]    (* A204997 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204998 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204999 *)

A204995 The index jA204905) for which such j exists.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 1, 4, 4, 5, 2, 6, 6, 1, 3, 8, 3, 9, 4, 2, 10, 11, 1, 5, 12, 3, 6, 14, 2, 15, 2, 4, 16, 1, 3, 18, 18, 5, 3, 20, 4, 21, 10, 2, 22, 23, 1, 7, 5, 7, 12, 26, 6, 3, 5, 8, 28, 29, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)
Showing 1-6 of 6 results.