A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).
2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1
Keywords
A204998 a(n) = k^2 - j^2, where (k^2,j^2) is the least pair of distinct squares for which n divides their difference.
3, 8, 3, 8, 5, 12, 7, 8, 9, 20, 11, 12, 13, 28, 15, 16, 17, 72, 19, 20, 21, 44, 23, 24, 75, 52, 27, 28, 29, 60, 31, 32, 33, 68, 35, 72, 37, 76, 39, 40, 41, 84, 43, 44, 45, 92, 47, 48, 147, 200, 51, 52, 53, 108, 55, 56, 57, 116, 59, 60, 61, 124, 63, 64, 65, 132, 67, 68, 69, 140, 71, 72, 73, 148, 75, 76, 77, 156, 79, 80, 81, 164
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..23005
Programs
Extensions
More terms from Antti Karttunen, Sep 28 2018
A204905
Least k such that n divides k^2-j^2 for some j satisfying 1<=j
2, 3, 2, 3, 3, 4, 4, 3, 5, 6, 6, 4, 7, 8, 4, 5, 9, 9, 10, 6, 5, 12, 12, 5, 10, 14, 6, 8, 15, 8, 16, 6, 7, 18, 6, 9, 19, 20, 8, 7, 21, 10, 22, 12, 7, 24, 24, 7, 14, 15, 10, 14, 27, 12, 8, 9, 11, 30, 30, 8
Offset: 1
Keywords
Comments
See A204892 for a discussion and guide to related sequences.
Examples
1 divides 2^2-1^2, so a(1)=2 2 divides 3^2-1^2, so a(2)=3 3 divides 2^2-a^2, so a(3)=2 4 divides 3^2-a^2, so a(4)=3
Programs
-
Mathematica
s[n_] := s[n] = n^2; z1 = 600; z2 = 60; Table[s[n], {n, 1, 30}] (* A000290 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A120070 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] Table[d[n], {n, 1, z2}] (* A204994 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 Table[k[n], {n, 1, z2}] (* A204905 *) Table[j[n], {n, 1, z2}] (* A204995 *) Table[s[k[n]], {n, 1, z2}] (* A204996 *) Table[s[j[n]], {n, 1, z2}] (* A204997 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204998 *) Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204999 *)
A205032 a(n) = (s(k)-s(j))/n, where (s(k),s(j)) is the least pair of oblong numbers (A002378) for which n divides their difference; a(n) = (1/n)*A205031(n).
4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Even n such that a(n) = 2 are: 2, 12, 20, 56, 72, 132, 156, 240, 272, 380, 552, 812, 992, 1056, 1332, 1640, 1892, 2256, 2756, 3540, 3660, 4032, 4160, 4556, 5112, 5256, 6320, 6972, 7656, 7832, ... - Antti Karttunen, Nov 06 2018
Links
- Antti Karttunen, Table of n, a(n) for n = 1..14025
Programs
-
Mathematica
(See the program at A205018.)
-
PARI
A205032(n) = for(k=2,oo,my(sk=k*(k+1)); for(j=1,k-1,if(!((sk-((j+1)*j))%n),return((sk-((j+1)*j))/n)))); \\ Antti Karttunen, Nov 06 2018
-
PARI
A205032(n) = for(k=sqrtint(n)-1,oo,my(sk=k*(k+1), d); for(j=1,k-1,d=(sk-((j+1)*j)); if(0==(d%n),return(d/n),if(d
Antti Karttunen, Nov 06 2018
Extensions
Definition edited and more terms from Antti Karttunen, Nov 06 2018
Comments
Examples
Links
Crossrefs
Programs
Mathematica
PARI