cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 248 results. Next

A204893 The index jA204892) for which such j exists, and s(k)=prime(k).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 4, 3, 2, 2, 1, 2, 1, 4, 3, 3, 3, 2, 1, 3, 3, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 2, 1, 4, 3, 3, 3, 2, 1, 3, 2, 2, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Cf. A204892.

Programs

  • Mathematica
    (See the program at A204892.)

A204890 Ordered differences of primes.

Original entry on oeis.org

1, 3, 2, 5, 4, 2, 9, 8, 6, 4, 11, 10, 8, 6, 2, 15, 14, 12, 10, 6, 4, 17, 16, 14, 12, 8, 6, 2, 21, 20, 18, 16, 12, 10, 6, 4, 27, 26, 24, 22, 18, 16, 12, 10, 6, 29, 28, 26, 24, 20, 18, 14, 12, 8, 2, 35, 34, 32, 30, 26, 24, 20, 18, 14, 8, 6, 39, 38, 36, 34, 30, 28, 24, 22
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

For a guide to related sequences, see A204892.
A086800, zeros omitted. - R. J. Mathar, Sep 15 2012

Examples

			a(1) = prime(2)-prime(1) = 3-2 = 1
a(2) = prime(3)-prime(1) = 5-2 = 3
a(3) = prime(3)-prime(2) = 5-3 = 2
a(4) = prime(4)-prime(1) = 7-2 = 5
a(5) = prime(4)-prime(2) = 7-3 = 4
a(6) = prime(4)-prime(3) = 7-5 = 2
From _Michel Marcus_, May 12 2016: (Start)
As a triangle, first rows are:
  1;
  3, 2;
  5, 4, 2;
  9, 8, 6, 4;
  11, 10, 8, 6, 2; (End)
		

Crossrefs

Programs

  • Mathematica
    (See the program at A204892.)
    With[{prs=Prime[Range[20]]},Flatten[Table[prs[[n]]-Take[prs,n-1], {n,2,Length[prs]}]]] (* Harvey P. Dale, Dec 01 2013 *)
  • PARI
    tabl(nn) = {for (n=2, nn, for (m=1, n-1, print1(prime(n) - prime(m), ", ");); print(););} \\ Michel Marcus, May 12 2016

A205558 (A204898)/2 = (prime(k)-prime(j))/2; A086802 without its zeros.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 5, 4, 3, 1, 7, 6, 5, 3, 2, 8, 7, 6, 4, 3, 1, 10, 9, 8, 6, 5, 3, 2, 13, 12, 11, 9, 8, 6, 5, 3, 14, 13, 12, 10, 9, 7, 6, 4, 1, 17, 16, 15, 13, 12, 10, 9, 7, 4, 3, 19, 18, 17, 15, 14, 12, 11, 9, 6, 5, 2, 20, 19, 18, 16, 15, 13, 12, 10, 7, 6, 3, 1, 22, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2012

Keywords

Comments

Let p(n) denote the n-th prime. If c is a positive integer, there are infinitely many pairs (k,j) such that c divides p(k)-p(j). The set of differences p(k)-p(j) is ordered as a sequence at A204890. Guide to related sequences:
c....k..........j..........p(k)-p(j).[p(k)-p(j)]/c
It appears that, as rectangular array, this sequence can be described by A(n,k) is the least m such that there are k primes in the set prime(n) + 2*i for {i=1..n}. - Michel Marcus, Mar 29 2023

Examples

			Writing prime(k) as p(k),
p(3)-p(2)=5-3=2
p(4)-p(2)=7-3=4
p(4)-p(3)=7-5=2
p(5)-p(2)=11-3=8
p(5)-p(3)=11-5=6
p(5)-p(4)=11-7=4,
so that the first 6 terms of A205558 are 1,2,1,4,3,2.
The sequence can be regarded as a rectangular array in which row n is given by [prime(n+2+k)-prime(n+1)]/2; a northwest corner follows:
1...2...4...5...7...8....10...13...14...17...19...20
1...3...4...6...7...9....12...13...16...18...19...21
2...3...5...6...8...11...12...15...17...18...20...23
1...3...4...6...9...10...13...15...16...18...21...24
2...3...5...8...9...12...14...15...17...20...23...24
1...3...6...7...10..12...13...15...18...21...22...25
2...5...6...9...11..12...14...17...20...21...24...26
- _Clark Kimberling_, Sep 29 2013
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]              (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]              (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 2; t = d[c]                      (* A080036 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]                  (* A133196 *)
    Table[j[n], {n, 1, z2}]                  (* A131818 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204898 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205558 *)

A204922 Ordered differences of Fibonacci numbers.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 12, 11, 10, 8, 5, 20, 19, 18, 16, 13, 8, 33, 32, 31, 29, 26, 21, 13, 54, 53, 52, 50, 47, 42, 34, 21, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 231, 230, 228, 225, 220, 212, 199, 178
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892. For numbers not in A204922, see A050939.
From Emanuele Munarini, Mar 29 2012: (Start)
Diagonal elements = Fibonacci numbers F(n+1) (A000045)
First column = Fibonacci numbers - 1 (A000071);
Second column = Fibonacci numbers - 2 (A001911);
Row sums = n*F(n+3) - F(n+2) + 2 (A014286);
Central coefficients = F(2*n+1) - F(n+1) (A096140).
(End)

Examples

			a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045;
a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2;
a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1;
a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4.
From _Emanuele Munarini_, Mar 29 2012: (Start)
Triangle begins:
   1;
   2,  1;
   4,  3,  2;
   7,  6,  5,  3;
  12, 11, 10,  8,  5;
  20, 19, 18, 16, 13,  8;
  33, 32, 31, 29, 26, 21, 13;
  54, 53, 52, 50, 47, 42, 34, 21;
  88, 87, 86, 84, 81, 76, 68, 55, 34;
  ... (End)
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
    
  • Mathematica
    (See the program at A204924.)
  • Maxima
    create_list(fib(n+3)-fib(k+2),n,0,20,k,0,n); /* Emanuele Munarini, Mar 29 2012 */
    
  • PARI
    {T(n,k) = fibonacci(n+2) - fibonacci(k+1)};
    for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019

Formula

From Emanuele Munarini, Mar 29 2012: (Start)
T(n,k) = Fibonacci(n+2) - Fibonacci(k+1).
T(n,k) = Sum_{i=k..n} Fibonacci(i+1). (End)

A204900 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k) is the k-th odd prime.

Original entry on oeis.org

2, 2, 4, 3, 5, 4, 6, 4, 8, 5, 9, 6, 9, 6, 11, 7, 11, 8, 12, 8, 14, 9, 15, 9, 15, 9, 16, 10, 17, 11, 18, 11, 19, 11, 20, 12, 21, 12, 22, 13, 23, 14, 23, 14, 24, 15, 24, 15, 25, 15, 27, 16, 28, 16, 29, 16, 30, 17, 31, 18, 30, 18, 31, 18, 32, 19, 32, 19, 34, 20, 34, 21, 34
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n + 1]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]      (* A065091 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]      (* A204898 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]      (* A204899 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]      (* A204900 *)
    Table[j[n], {n, 1, z2}]      (* A204901 *)
    Table[s[k[n]], {n, 1, z2}]   (* A204902 *)
    Table[s[j[n]], {n, 1, z2}]   (* A204903 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204904 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A000034 conjectured *)

A204908 Least k such that n divides s(k)-s(j) for some j in [1,k], where s(k) is the k-th prime >=5.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 6, 4, 7, 5, 8, 5, 9, 6, 10, 7, 11, 7, 12, 9, 13, 8, 14, 8, 16, 9, 15, 11, 18, 10, 17, 10, 18, 11, 21, 11, 20, 12, 21, 13, 22, 13, 23, 16, 23, 14, 24, 14, 25, 16
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n + 2]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}] (* primes >=5 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A204906 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A204907 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]     (* A204908 *)
    Table[j[n], {n, 1, z2}]     (* A204909 *)
    Table[s[k[n]], {n, 1, z2}]  (* A204910 *)
    Table[s[j[n]], {n, 1, z2}]  (* A204911 *)
  • PARI
    a(n) = {my(p=5, k=1); while(sum(i=5, p-1, isprime(i)&&(p-i)%n==0)==0, p=nextprime(p+1); k++); k; } \\ Jinyuan Wang, Jan 30 2020

A204924 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=A000045(k+1) (Fibonacci numbers).

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 7, 9, 12, 7, 9, 7, 7, 7, 8, 10, 12, 12, 9, 8, 9, 10, 8, 17, 8, 8, 8, 9, 21, 12, 14, 10, 18, 17, 11, 9, 10, 10, 12, 12, 9, 12, 13, 9, 17, 9, 9, 9, 10, 17, 12, 12, 25, 22
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			1 divides s(2)-s(1), so a(1)=2
2 divides s(3)-s(1), so a(2)=3
3 divides s(4)-s(2), so a(3)=4
9 divides s(7)-s(3), so a(9)=7
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 300; z2 = 60;
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]   (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]   (* A204923 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]       (* A204924 *)
    Table[j[n], {n, 1, z2}]       (* A204925 *)
    Table[s[k[n]], {n, 1, z2}]    (* A204926 *)
    Table[s[j[n]], {n, 1, z2}]    (* A204927 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204928 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204929 *)

A204932 Least k such that n divides k!-j! for some j satisfying 1<=j

Original entry on oeis.org

2, 3, 4, 3, 3, 4, 5, 5, 4, 6, 4, 5, 9, 6, 6, 5, 5, 4, 5, 6, 6, 4, 4, 5, 6, 9, 7, 8, 6, 6, 10, 5, 7, 6, 8, 7, 13, 5, 9, 6, 7, 6, 11, 7, 7, 8, 10, 5, 8, 6, 6, 9, 12, 7, 8, 8, 5, 6, 5, 6, 16, 10, 8, 9, 14, 7, 8, 11, 8, 8, 9, 7, 8, 13, 6, 7, 12, 9, 14, 7, 10, 7, 19, 8, 11, 11, 6, 7, 10, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			1 divides 2!-1!, so a(1)=2
2 divides 3!-2!, so a(2)=3
3 divides 4!-3!, so a(3)=4
13 divides 9!-4!, so a(13)=9
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t, k, V;
      t:= 1:
      for k from 1 do
        t:= t*k mod n;
        if assigned(V[t]) then return k else V[t]:= k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 11 2024
  • Mathematica
    s[n_] := s[n] = n!; z1 = 80; z2 = 60;
    Table[s[n], {n, 1, 30}]     (* A000142 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A204930 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A204931 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]        (* A204932 *)
    Table[j[n], {n, 1, z2}]        (* A204933 *)
    Table[s[k[n]], {n, 1, z2}]     (* A204934 *)
    Table[s[j[n]], {n, 1, z2}]     (* A204935 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204936 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204937 *)

A204982 Least k such that n divides k!! - j!! for some j satisfying 1 <= j < k.

Original entry on oeis.org

2, 3, 4, 5, 4, 4, 4, 6, 6, 6, 6, 5, 5, 5, 6, 8, 7, 7, 7, 6, 8, 12, 6, 8, 10, 7, 10, 8, 14, 7, 8, 10, 6, 7, 9, 10, 12, 10, 9, 6, 8, 8, 15, 12, 6, 6, 6, 8, 11, 11, 7, 7, 17, 10, 12, 8, 7, 16, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			Example 1. Using 1!! = 1, 2!! = 2, 3!! = 3, 4!! = 8, we verify that a(5) = 5 as follows: The values of 4!!-j!! for j = 1,2,3 are 7,6,5, respectively, so 5 divides 4!! - 3!!, and so for k = 4 there is a number j as required.  On the other hand, it is easy to check that for k = 1,2,3, there is no such j.
Example 2. To see that a(6) = 4, we already noted that 6 divides 4!!-2!! in Example 1, and it is easy to check that for k = 1,2,3, the number 6 does not divide k!! - j!! for any j satisfying 1 <=j < k.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = n!!; z1 = 400; z2 = 60;
    Table[s[n], {n, 1, 30}]  (* A006882 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]  (* A204912 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A204913 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]     (* A204982 *)
    Table[j[n], {n, 1, z2}]     (* A205100 *)
    Table[s[k[n]], {n, 1, z2}]  (* A205101 *)
    Table[s[j[n]], {n, 1, z2}]  (* A205102 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205103 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205104 *)

Extensions

Edited by Clark Kimberling, Apr 15 2020

A204987 Least k such that n divides 2^k - 2^j for some j satisfying 1 <= j < k.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 4, 4, 7, 5, 11, 4, 13, 4, 5, 5, 9, 7, 19, 6, 7, 11, 12, 5, 21, 13, 19, 5, 29, 5, 6, 6, 11, 9, 13, 8, 37, 19, 13, 7, 21, 7, 15, 12, 13, 12, 24, 6, 22, 21, 9, 14, 53, 19, 21, 6, 19, 29, 59, 6, 61, 6, 7, 7, 13, 11, 67, 10, 23, 13, 36, 9, 10, 37, 21, 20, 31, 13, 40, 8, 55, 21, 83, 8, 9, 15, 29, 13
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			1 divides 2^2 - 2^1, so a(1)=2;
2 divides 2^2 - 2^1, so a(2)=2;
3 divides 2^3 - 2^1, so a(3)=3;
4 divides 2^3 - 2^2, so a(4)=3;
5 divides 2^5 - 2^1, so a(5)=5.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = 2^n; z1 = 1000; z2 = 50;
    Table[s[n], {n, 1, 30}]     (* A000079 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A204985 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A204986 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]     (* A204987 *)
    Table[j[n], {n, 1, z2}]     (* A204988 *)
    Table[s[k[n]], {n, 1, z2}]  (* A204989 *)
    Table[s[j[n]], {n, 1, z2}]  (* A140670 ? *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204991 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204992 *)
    %%/2  (* A204990=(1/2)*A204991 *)
  • PARI
    A204987etA204988(n) = { my(k=2); while(1,for(j=1,k-1,if(!(((2^k)-(2^j))%n),return([k,j]))); k++); }; \\ (Computes also A204988 at the same time) - Antti Karttunen, Nov 19 2017
    
  • PARI
    a(n)={my(k=valuation(n,2)); max(k, 1) + znorder(Mod(2, n>>k))} \\ Andrew Howroyd, Aug 08 2018

Formula

a(n) = max(1, A007814(n)) + A007733(n). - Andrew Howroyd, Aug 08 2018

Extensions

More terms from Antti Karttunen, Nov 19 2017
Showing 1-10 of 248 results. Next