cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A204933 The index jA204932) for which such j exists.

Original entry on oeis.org

1, 2, 3, 2, 1, 3, 1, 4, 3, 5, 2, 4, 4, 3, 5, 4, 1, 3, 3, 5, 3, 2, 1, 4, 5, 4, 6, 7, 4, 5, 2, 4, 4, 3, 7, 6, 6, 3, 4, 5, 5, 3, 8, 4, 6, 4, 4, 4, 7, 5, 3, 4, 2, 6, 6, 7, 3, 4, 2, 5, 8, 2, 7, 8, 13, 4, 5, 5, 4, 7, 7, 6, 4, 6, 5, 4, 11, 4, 9, 6, 9, 5, 3, 7, 5, 8, 4, 4, 8, 6, 13, 4, 11, 4, 13, 4
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204932.)

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A204930 Ordered differences of factorials.

Original entry on oeis.org

1, 5, 4, 23, 22, 18, 119, 118, 114, 96, 719, 718, 714, 696, 600, 5039, 5038, 5034, 5016, 4920, 4320, 40319, 40318, 40314, 40296, 40200, 39600, 35280, 362879, 362878, 362874, 362856, 362760, 362160, 357840, 322560, 3628799, 3628798
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			a(1)=s(2)-s(1)=2!-1!=1
a(2)=s(3)-s(1)=3!-1!=5
a(3)=s(3)-s(2)=3!-2!=4
a(4)=s(4)-s(1)=4!-1!=23
		

Crossrefs

Programs

  • Mathematica
    (See the program at A204932.)

A204935 The number j! such that n divides k!-j!>0, where k is the least positive integer for which such a j exists.

Original entry on oeis.org

1, 2, 6, 2, 1, 6, 1, 24, 6, 120, 2, 24, 24, 6, 120, 24, 1, 6, 6, 120, 6, 2, 1, 24, 120, 24, 720, 5040, 24, 120, 2, 24, 24, 6, 5040, 720, 720, 6, 24, 120, 120, 6, 40320, 24, 720, 24, 24, 24, 5040, 120, 6, 24, 2, 720, 720, 5040, 6, 24, 2, 120, 40320, 2, 5040
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,k,V;
      t:= 1:
      for k from 1 do
        t:= t*k mod n;
        if assigned(V[t]) then return V[t]! else V[t]:= k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 10 2024
  • Mathematica
    (See the program at A204932.)

A204937 (k(n)!-j(n)!)/n, where (k!,j!) is the least pair of distinct factorials for which n divides k!-j!.

Original entry on oeis.org

1, 2, 6, 1, 1, 3, 17, 12, 2, 60, 2, 8, 27912, 51, 40, 6, 7, 1, 6, 30, 34, 1, 1, 4, 24, 13956, 160, 1260, 24, 20, 117058, 3, 152, 21, 1008, 120, 168297840, 3, 9304, 15, 120, 17, 927360, 114, 96, 876, 77208, 2, 720, 12, 14, 6978, 9037766, 80, 720, 630, 2
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

The ordering of differences k!-j! is given at A204930. For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204932.)

A204934 Least k! such that n divides k!-j! for some j

Original entry on oeis.org

2, 6, 24, 6, 6, 24, 120, 120, 24, 720, 24, 120, 362880, 720, 720, 120, 120, 24, 120, 720, 720, 24, 24, 120, 720, 362880, 5040, 40320, 720, 720, 3628800, 120, 5040, 720, 40320, 5040, 6227020800, 120, 362880, 720, 5040, 720, 39916800, 5040
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204932.)

A204936 k!-j!, where (k!,j!) is the least pair of distinct factorials for which n divides k!-j!.

Original entry on oeis.org

1, 4, 18, 4, 5, 18, 119, 96, 18, 600, 22, 96, 362856, 714, 600, 96, 119, 18, 114, 600, 714, 22, 23, 96, 600, 362856, 4320, 35280, 696, 600, 3628798, 96, 5016, 714, 35280, 4320, 6227020080, 114, 362856, 600, 4920, 714, 39876480, 5016, 4320
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

The ordering of pairs (k!,j!) is given by A204930. For a guide to related sequences, see A204892.

Examples

			(See the example at A204932.)
		

Crossrefs

Programs

  • Mathematica
    (See the program at A204932.)

A204981 Least 2^(k-1) such that n divides 2^(k-1)-2^(j-1) for some j

Original entry on oeis.org

2, 4, 4, 8, 16, 8, 8, 16, 64, 32, 1024, 16, 4096, 16, 16, 32, 256, 128, 262144, 64, 64, 2048, 2048, 32, 1048576, 8192, 262144, 32, 268435456, 32, 32, 64, 1024, 512, 4096, 256, 68719476736, 524288, 4096, 128, 1048576, 128, 16384, 4096, 4096
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204979.)

A204931 Least k such that n divides A204930(k), the k-th difference of two distinct factorials.

Original entry on oeis.org

1, 3, 6, 3, 2, 6, 7, 10, 6, 15, 5, 10, 32, 13, 15, 10, 7, 6, 9, 15, 13, 5, 4, 10, 15, 32, 21, 28, 14, 15, 38, 10, 19, 13, 28, 21, 72, 9, 32, 15, 20, 13, 53, 19, 21, 25, 40, 10, 28, 15, 13, 32, 57, 21, 27, 28, 9, 14, 8, 15
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204932.)
Showing 1-9 of 9 results.