A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).
2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1
Keywords
A204999 a(n) = (1/n)*A204998(n).
3, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Positions of 3's seem to be given by a subsequence of A104777. - Antti Karttunen, Sep 29 2018
Links
- Antti Karttunen, Table of n, a(n) for n = 1..23005
Programs
Extensions
More terms from Antti Karttunen, Sep 28 2018
A204998 a(n) = k^2 - j^2, where (k^2,j^2) is the least pair of distinct squares for which n divides their difference.
3, 8, 3, 8, 5, 12, 7, 8, 9, 20, 11, 12, 13, 28, 15, 16, 17, 72, 19, 20, 21, 44, 23, 24, 75, 52, 27, 28, 29, 60, 31, 32, 33, 68, 35, 72, 37, 76, 39, 40, 41, 84, 43, 44, 45, 92, 47, 48, 147, 200, 51, 52, 53, 108, 55, 56, 57, 116, 59, 60, 61, 124, 63, 64, 65, 132, 67, 68, 69, 140, 71, 72, 73, 148, 75, 76, 77, 156, 79, 80, 81, 164
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..23005
Programs
Extensions
More terms from Antti Karttunen, Sep 28 2018
A204905
Least k such that n divides k^2-j^2 for some j satisfying 1<=j
2, 3, 2, 3, 3, 4, 4, 3, 5, 6, 6, 4, 7, 8, 4, 5, 9, 9, 10, 6, 5, 12, 12, 5, 10, 14, 6, 8, 15, 8, 16, 6, 7, 18, 6, 9, 19, 20, 8, 7, 21, 10, 22, 12, 7, 24, 24, 7, 14, 15, 10, 14, 27, 12, 8, 9, 11, 30, 30, 8
Offset: 1
Keywords
Comments
See A204892 for a discussion and guide to related sequences.
Examples
1 divides 2^2-1^2, so a(1)=2 2 divides 3^2-1^2, so a(2)=3 3 divides 2^2-a^2, so a(3)=2 4 divides 3^2-a^2, so a(4)=3
Programs
-
Mathematica
s[n_] := s[n] = n^2; z1 = 600; z2 = 60; Table[s[n], {n, 1, 30}] (* A000290 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A120070 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] Table[d[n], {n, 1, z2}] (* A204994 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 Table[k[n], {n, 1, z2}] (* A204905 *) Table[j[n], {n, 1, z2}] (* A204995 *) Table[s[k[n]], {n, 1, z2}] (* A204996 *) Table[s[j[n]], {n, 1, z2}] (* A204997 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204998 *) Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204999 *)
Comments
Examples
Links
Crossrefs
Programs
Mathematica
PARI