cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133146 Antidiagonal sums of the triangle A133128.

Original entry on oeis.org

2, 5, 7, 14, 18, 29, 35, 50, 58, 77, 87, 110, 122, 149, 163, 194, 210, 245, 263, 302, 322, 365, 387, 434, 458, 509, 535, 590, 618, 677, 707, 770, 802, 869, 903, 974, 1010, 1085, 1123, 1202, 1242, 1325, 1367, 1454, 1498, 1589, 1635, 1730, 1778, 1877, 1927, 2030
Offset: 0

Views

Author

Paul Curtz, Aug 27 2008

Keywords

Examples

			a(2) = A133128(2,0) + A133128(1,1) = 10 - 3 = 7.
a(3) = A133128(3,0) + A133128(2,1) = 17 - 3 = 14.
		

Programs

  • Magma
    [19/8 +5*n/4 +3*n^2/4 -(-1)^n*(n/4+3/8): n in [0..60]]; // Vincenzo Librandi, Aug 10 2011
  • Mathematica
    CoefficientList[Series[(1+2x)(2-x+x^3)/((1-x)^3(1+x)^2),{x,0,60}],x] (* or *) LinearRecurrence[{1,2,-2,-1,1},{2,5,7,14,18},60] (* Harvey P. Dale, Aug 26 2013 *)

Formula

First differences: a(n+1) - a(n) = A059029(n+1).
Bisections: a(2n+1) = A005918(n+1). a(2n) = A141631(n+1).
G.f.: (1+2*x)(2 - x + x^3)/((1-x)^3*(1+x)^2). - R. J. Mathar, Oct 15 2008
a(n) = 19/8 + 5*n/4 + 3*n^2/4 - (-1)^n*(n/4 + 3/8). - R. J. Mathar, Oct 15 2008
From Harvey P. Dale, Aug 26 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5); a(0)=2, a(1)=5, a(2)=7, a(3)=14, a(4)=18. (End)

Extensions

Edited and extended by R. J. Mathar, Oct 15 2008

A141620 First differences of A120070.

Original entry on oeis.org

5, -3, 10, -3, -5, 17, -3, -5, -7, 26, -3, -5, -7, -9, 37, -3, -5, -7, -9, -11, 50, -3, -5, -7, -9, -11, -13, 65, -3, -5, -7, -9, -11, -13, -15, 82, -3, -5, -7, -9, -11, -13, -15, -17, 101, -3, -5, -7, -9, -11, -13, -15, -17, -19, 122, -3, -5, -7, -9, -11, -13, -15, -17, -19, -21
Offset: 0

Views

Author

Paul Curtz, Aug 23 2008

Keywords

Crossrefs

Cf. A120070. Essentially the same as A133128.

Formula

a(n) = mix (from 2) n^2+1 (or A002522(n+2)), (ever from -3) successive -A005408.
a(n) = ((A^2+3*A-2*n)*(-A^2+A+2*(n+4))-(B^2+3*B-2*(n-1))*(-B^2+B+2*(n+3)))/4, where A = floor((sqrt(8*n+9)-1)/2) and B = floor((sqrt(8*(n-1)+9)-1)/2) = floor((sqrt(8*n+1)-1)/2). - Luce ETIENNE, May 31 2017
Showing 1-2 of 2 results.