A309829 Numbers k for which A120077(k) != A007407(k).
20, 21, 110, 136, 156, 930, 44310
Offset: 1
Programs
-
PARI
s=1; for(n=2, +oo, s += 1/n^2; denominator(s)!=denominator(s-1/n) && print1(n, ", "))
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
s=1; for(n=2, +oo, s += 1/n^2; denominator(s)!=denominator(s-1/n) && print1(n, ", "))
For the rational triangle see W. Lang link. Numerator triangle begins as: 3; 8, 5; 15, 3, 7; 24, 21, 16, 9; 35, 2, 1, 5, 11; 48, 45, 40, 33, 24, 13; 63, 15, 55, 3, 39, 7, 15; 80, 77, 8, 65, 56, 5, 32, 17; 99, 6, 91, 21, 3, 4, 51, 9, 19;
[Numerator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
Table[1/n^2 - 1/m^2, {m,2,12}, {n,m-1}]//Flatten//Numerator (* Jean-François Alcover, Sep 16 2013 *)
def A120072(n,k): return numerator(1/k^2 - 1/n^2) flatten([[A120072(n,k) for k in range(1,n)] for n in range(2,19)]) # G. C. Greubel, Apr 24 2023
For the rational triangle see W. Lang link. Denominator triangle begins as: 4; 9, 36; 16, 16, 144; 25, 100, 225, 400; 36, 9, 12, 144, 900; 49, 196, 441, 784, 1225, 1764; 64, 64, 576, 64, 1600, 576, 3136; 81, 324, 81, 1296, 2025, 324, 3969, 5184; 100, 25, 900, 400, 100, 225, 4900, 1600, 8100;
[Denominator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
Table[(1/n^2 - 1/m^2)//Denominator, {m,2,15}, {n,m-1}]//Flatten (* Jean-François Alcover, Sep 16 2013 *)
def A120073(n,k): return denominator(1/k^2 - 1/n^2) flatten([[A120073(n,k) for k in range(1,n)] for n in range(2,19)]) # G. C. Greubel, Apr 24 2023
A120072:= func< n,k | Numerator(1/k^2 - 1/n^2) >; [(&+[A120072(n,k): k in [1..n-1]]): n in [2..50]]; // G. C. Greubel, Apr 24 2023
Table[Sum[1/n^2 - 1/m^2 //Numerator, {n,m-1}], {m,2,40}] (* Jean-François Alcover, Sep 16 2013 *)
def A120072(n,k): return numerator(1/k^2 - 1/n^2) [sum(A120072(n,k) for k in range(1,n)) for n in range(2,51)] # G. C. Greubel, Apr 24 2023
A120073:= func< n,k | Denominator(1/k^2 - 1/n^2) >; [(&+[A120073(n,k): k in [1..n-1]]): n in [2..50]]; // G. C. Greubel, Apr 24 2023
A120075[n_]:= Sum[Denominator[1/k^2 -1/n^2], {k,n-1}]; Table[A120075[n], {n,2,50}] (* G. C. Greubel, Apr 24 2023 *)
def A120073(n,k): return denominator(1/k^2 - 1/n^2) [sum(A120073(n,k) for k in range(1,n)) for n in range(2,51)] # G. C. Greubel, Apr 24 2023
The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).
A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >; [A120076(n): n in [2..30]]; // G. C. Greubel, Apr 24 2023
Table[Numerator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 24 2023 *)
def A120076(n): return numerator(harmonic_number(n,2) - 1/n) [A120076(n) for n in range(2,31)] # G. C. Greubel, Apr 24 2023
Comments