cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120076 Numerators of row sums of rational triangle A120072/A120073.

Original entry on oeis.org

3, 37, 169, 4549, 4769, 241481, 989549, 9072541, 1841321, 225467009, 227698469, 38801207261, 39076419341, 196577627041, 790503882349, 229526961468061, 230480866420061, 83512167402400421, 3351610394325821
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The corresponding denominators are given by A120077.
See the W. Lang link under A120072 for more details.

Examples

			The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).
		

Crossrefs

Programs

  • Magma
    A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >;
    [A120076(n): n in [2..30]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Table[Numerator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* G. C. Greubel, Apr 24 2023 *)
  • SageMath
    def A120076(n): return numerator(harmonic_number(n,2) - 1/n)
    [A120076(n) for n in range(2,31)] # G. C. Greubel, Apr 24 2023

Formula

a(n) = numerator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m >= 2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link in A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).