cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120078 Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.

Original entry on oeis.org

1, 4, -3, 36, -27, -5, 144, -108, -20, -7, 3600, -2700, -500, -175, -81, 3600, -2700, -500, -175, -81, -44, 176400, -132300, -24500, -8575, -3969, -2156, -1300, 705600, -529200, -98000, -34300, -15876, -8624, -5200, -3375, 6350400, -4762800, -882000, -308700, -142884, -77616, -46800, -30375, -20825
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The row polynomials P(n,x) = Sum_{k=1..n-1} a(n,k)*x^k, n >= 1, appear in the numerator of the o.g.f. for column n of the triangle of rationals A120072(m,n)/A120073(m,n), m >= 2, n = 1..m-1. P(n,x) has degree n-1.
See the W. Lang link under A120072 for the precise form of the o.g.f.s: G(x,n) = -dilog(1-x) + x*P(n,4)/*(A(n)*(n^2)*(1-x)), with A(n) = [1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, ...] = conjectured to be A027451(n), n >= 1.

Examples

			For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)).
Triangle begins:
       1;
       4,      -3;
      36,     -27,     -5;
     144,    -108,    -20,    -7;
    3600,   -2700,   -500,  -175,   -81;
    3600,   -2700,   -500,  -175,   -81,   -44;
  176400, -132300, -24500, -8575, -3969, -2156, -1300;
		

Crossrefs

Row sums (unsigned) give A120079.
Signed row sums conjectured to coincide with A027451.

Programs

  • Magma
    f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >;
    A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >;
    [A120078(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 26 2023
    
  • Mathematica
    Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 26 2023 *)
  • SageMath
    def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2
    def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k)
    flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 26 2023

Formula

T(n, k) = A051418(n) * (1 if k = 1 otherwise 1/k^2 - 1/(k-1)^2). - G. C. Greubel, Apr 26 2023