cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120081 Denominators of expansion for original Debye function (n=3).

Original entry on oeis.org

1, 8, 20, 1, 1680, 1, 90720, 1, 4435200, 1, 207567360, 1, 6538371840000, 1, 423437414400, 1, 67580611338240000, 1, 35763659520196608000, 1, 6155242080686899200000, 1, 117509166994931712000000, 1, 15244417230585693025075200000, 1, 1799300365026394374144000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Numerators are given in A120080.
See A120070 for the definition of the Debye function D(x)=D(3,x) and references and links.

Crossrefs

Programs

  • Magma
    [Denominator(3*Bernoulli(n)/((n+3)*Factorial(n))): n in [0..50]]; // G. C. Greubel, May 01 2023
    
  • Mathematica
    max = 26; Denominator[CoefficientList[Integrate[Normal[Series[(3*(t^3/(Exp[t] -1)))/x^3, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
    Table[Denominator[3*BernoulliB[n]/((n+3)*n!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
  • SageMath
    def A120081(n): return denominator(3*bernoulli(n)/((n+3)*factorial(n)))
    [A120081(n) for n in range(51)] # G. C. Greubel, May 01 2023

Formula

a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - 3*x/8 + Sum_{k >= 1} (3*B(2*k)/((2*k+3)*(2*k)!))*x^(2*k) ), where B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator( 3*Bernoulli(n)/((n+3)*n!) ), n >= 0. - G. C. Greubel, May 01 2023