A120090 Numbers whose square is the perimeter of a primitive Pythagorean triangle.
12, 30, 56, 90, 132, 154, 182, 208, 234, 240, 306, 340, 374, 380, 408, 418, 456, 462, 494, 546, 552, 598, 644, 650, 690, 700, 736, 756, 800, 850, 864, 870, 918, 928, 986, 992, 1026, 1044, 1054, 1102, 1116, 1122, 1160, 1178, 1240, 1254, 1260, 1302, 1320
Offset: 1
Keywords
Links
Programs
-
Maple
isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 1200 do if isA024364(n^2) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
-
Mathematica
isA024364[an_] := Module[{r, s}, For[ r = Floor[(an/4)^(1/2)], r <= Floor[(an/2)^(1/2)], r++, For[s = r - 1, s >= 1, s -= 2, If[2 r (r + s) == an && GCD[r, s] < 2, Return[True]]; If[2 r (r + s) < an, Break[]]]]; Return[False]]; Select[Range[2, 2000], If[isA024364[#^2], Print[#]; True, False]&] (* Jean-François Alcover, May 24 2024, after R. J. Mathar *)
Formula
a(n) = 2*u*v, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs(j,k) j>k with odd k such that pairs (u,v) are coprime with v odd}.
Extensions
Corrected and extended by R. J. Mathar, Jun 08 2006
Comments