cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120090 Numbers whose square is the perimeter of a primitive Pythagorean triangle.

Original entry on oeis.org

12, 30, 56, 90, 132, 154, 182, 208, 234, 240, 306, 340, 374, 380, 408, 418, 456, 462, 494, 546, 552, 598, 644, 650, 690, 700, 736, 756, 800, 850, 864, 870, 918, 928, 986, 992, 1026, 1044, 1054, 1102, 1116, 1122, 1160, 1178, 1240, 1254, 1260, 1302, 1320
Offset: 1

Views

Author

Lekraj Beedassy, Jun 07 2006

Keywords

Comments

a(n) = sqrt(A120089).

Programs

  • Maple
    isA024364 := proc(an) local r::integer,s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r,s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 1200 do if isA024364(n^2) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
  • Mathematica
    isA024364[an_] := Module[{r, s}, For[ r = Floor[(an/4)^(1/2)], r <= Floor[(an/2)^(1/2)], r++, For[s = r - 1, s >= 1, s -= 2, If[2 r (r + s) == an && GCD[r, s] < 2, Return[True]]; If[2 r (r + s) < an,  Break[]]]]; Return[False]];
    Select[Range[2, 2000], If[isA024364[#^2], Print[#]; True, False]&] (* Jean-François Alcover, May 24 2024, after R. J. Mathar *)

Formula

a(n) = 2*u*v, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs(j,k) j>k with odd k such that pairs (u,v) are coprime with v odd}.

Extensions

Corrected and extended by R. J. Mathar, Jun 08 2006