A120111 Bi-diagonal inverse matrix of A120108.
1, -2, 1, 0, -3, 1, 0, 0, -2, 1, 0, 0, 0, -5, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -7, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1
Offset: 0
Examples
Triangle begins 1; -2, 1; 0, -3, 1; 0, 0, -2, 1; 0, 0, 0, -5, 1; 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, -7, 1; 0, 0, 0, 0, 0, 0, -2, 1; 0, 0, 0, 0, 0, 0, 0, -3, 1; 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
A014963:= func< n | Lcm([1..n])/Lcm([1..n-1]) >; A120111:= func< n,k | k eq n select 1 else k eq n-1 select -A014963(n+1) else 0 >; [A120111(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, May 05 2023
-
Mathematica
T[n_, k_] := Switch[k, n, 1, n-1, -Exp[MangoldtLambda[n+1]], _, 0]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* Jean-François Alcover, Mar 01 2021 *) (* Second program *) A014963[n_]:= LCM@@Range[n]/(LCM@@Range[n-1]); A120111[n_, k_]:= If[k==n, 1, If[k==n-1, -A014963[n+1], 0]]; Table[A120111[n,k], {n,0,20}, {k,0,n}]//Flatten (* G. C. Greubel, May 05 2023 *)
-
SageMath
def A014963(n): return lcm(range(1,n+1))/lcm(range(1,n)) def A120111(n,k): if (k
A014963(n+1) else: return 1 flatten([[A120111(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, May 05 2023
Comments