cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120111 Bi-diagonal inverse matrix of A120108.

Original entry on oeis.org

1, -2, 1, 0, -3, 1, 0, 0, -2, 1, 0, 0, 0, -5, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -7, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

Subdiagonal is -lcm(1,...,n+2)/lcm(1,...,n+1) or -A014963(n+1).
Row sums are A120112.

Examples

			Triangle begins
   1;
  -2,  1;
   0, -3,  1;
   0,  0, -2,  1;
   0,  0,  0, -5,  1;
   0,  0,  0,  0, -1,  1;
   0,  0,  0,  0,  0, -7,  1;
   0,  0,  0,  0,  0,  0, -2,  1;
   0,  0,  0,  0,  0,  0,  0, -3,  1;
   0,  0,  0,  0,  0,  0,  0,  0, -1,   1;
   0,  0,  0,  0,  0,  0,  0,  0,  0, -11, 1;
		

Crossrefs

Programs

  • Magma
    A014963:= func< n | Lcm([1..n])/Lcm([1..n-1]) >;
    A120111:= func< n,k | k eq n select 1 else k eq n-1 select -A014963(n+1) else 0 >;
    [A120111(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, May 05 2023
    
  • Mathematica
    T[n_, k_] := Switch[k, n, 1, n-1, -Exp[MangoldtLambda[n+1]], _, 0];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* Jean-François Alcover, Mar 01 2021 *)
    (* Second program *)
    A014963[n_]:= LCM@@Range[n]/(LCM@@Range[n-1]);
    A120111[n_, k_]:= If[k==n, 1, If[k==n-1, -A014963[n+1], 0]];
    Table[A120111[n,k], {n,0,20}, {k,0,n}]//Flatten (* G. C. Greubel, May 05 2023 *)
  • SageMath
    def A014963(n): return lcm(range(1,n+1))/lcm(range(1,n))
    def A120111(n,k):
        if (kA014963(n+1)
        else: return 1
    flatten([[A120111(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, May 05 2023