cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120113 Bi-diagonal inverse of number triangle A120101.

Original entry on oeis.org

1, -6, 1, 0, -5, 1, 0, 0, -14, 1, 0, 0, 0, -3, 1, 0, 0, 0, 0, -11, 1, 0, 0, 0, 0, 0, -13, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -17, 1, 0, 0, 0, 0, 0, 0, 0, 0, -19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

Subdiagonal is -A120114(n-1).

Examples

			Triangle begins
   1;
  -6,  1;
   0, -5,   1;
   0,  0, -14,  1;
   0,  0,   0, -3,   1;
   0,  0,   0,  0, -11,   1;
   0,  0,   0,  0,   0, -13,  1;
   0,  0,   0,  0,   0,   0, -2,   1;
   0,  0,   0,  0,   0,   0,  0, -17,   1;
   0,  0,   0,  0,   0,   0,  0,   0, -19,  1;
   0,  0,   0,  0,   0,   0,  0,   0,   0, -1,  1;
		

Crossrefs

Programs

  • Magma
    A120114:= func< n | Lcm([1..2*n+4])/Lcm([1..2*n+2]) >;
    A120113:= func< n,k | k eq n select 1 else k eq n-1 select -A120114(n-1) else 0 >;
    [A120113(n,k): k in [0..n], n in [0..16]]; // G. C. Greubel, May 05 2023
    
  • Mathematica
    A120114[n_]:= LCM@@Range[2*n+4]/(LCM@@Range[2*n+2]);
    A120113[n_, k_]:= If[k==n, 1, If[k==n-1, -A120114[n-1], 0]];
    Table[A120113[n, k], {n,0,16}, {k,0,n}]//Flatten
  • SageMath
    def A120113(n,k):
        if (kA120113(n,k) for k in range(n+1)] for n in range(17)]) # G. C. Greubel, May 05 2023

Formula

T(n, k) = 1 if k = n, T(n, k) = -A120114(n-1) if k = n-1, otherwise 0. - G. C. Greubel, May 05 2023