A120124 Smallest prime p such that p*10^n + 1 is a prime.
3, 7, 3, 7, 7, 61, 3, 7, 7, 3, 19, 37, 109, 79, 97, 13, 37, 19, 73, 103, 97, 283, 157, 61, 19, 61, 1213, 3, 163, 691, 367, 163, 181, 157, 241, 3, 103, 733, 151, 283, 337, 193, 211, 163, 7, 73, 307, 61, 223, 1549, 31, 127, 13, 547, 103, 151, 193, 811, 337, 19, 1021, 151
Offset: 1
Keywords
Examples
a(1) = 3 because 31 = 3*10 + 1 is the smallest prime of form p*10 + 1, where p is a prime. a(2) = 7 because 701 = 7*100 + 1 is the smallest prime of form p*100 + 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000 (first 300 terms from _Vincenzo Librandi_)
Programs
-
Maple
Primes:= select(isprime,[$1..10^5]): for n from 1 to 1000 do for p in Primes do if isprime(p*10^n+1) then A[n]:= p fi od od: seq(A[n],n=1..1000); # Robert Israel, May 29 2014
-
Mathematica
prs=Prime[Range[2000]];Table[i=1;While[!PrimeQ[First[Take[prs,{i}]] 10^n+1],i++];Prime[i],{n,200}] (* Harvey P. Dale, May 15 2011 *)
Comments