cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120143 a(n) = 17 + floor( (1 + Sum_{j=0..n-1} a(j))/2 ).

Original entry on oeis.org

17, 26, 39, 58, 87, 131, 196, 294, 441, 662, 993, 1489, 2234, 3351, 5026, 7539, 11309, 16963, 25445, 38167, 57251, 85876, 128814, 193221, 289832, 434748, 652122, 978183, 1467274, 2200911, 3301367, 4952050, 7428075, 11142113, 16713169
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{t_,a_}]:=Module[{c=17+Floor[(1+t)/2]},{t+c,c}]; NestList[nxt,{17,17},60][[All,2]] (* Harvey P. Dale, Dec 25 2020 *)
  • SageMath
    @CachedFunction
    def A120143(n): return 17 + (1 +sum(A120143(k) for k in range(1,n)))//2
    [A120143(n) for n in range(1,60)] # G. C. Greubel, May 11 2023

A120145 a(n) = 20 + floor( (1 + Sum_{j=1..n-1} a(j)) / 2 ).

Original entry on oeis.org

20, 30, 45, 68, 102, 153, 229, 344, 516, 774, 1161, 1741, 2612, 3918, 5877, 8815, 13223, 19834, 29751, 44627, 66940, 100410, 150615, 225923, 338884, 508326, 762489, 1143734, 1715601, 2573401, 3860102, 5790153, 8685229, 13027844
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= 20 +Quotient[1 +Sum[a[k], {k,n-1}], 2];
    Table[a[n], {n,60}] (* G. C. Greubel, May 14 2023 *)
  • SageMath
    @CachedFunction
    def A120145(n): return 20 + (1+sum(A120145(k) for k in range(1,n)))//2
    [A120145(n) for n in range(1,61)] # G. C. Greubel, May 14 2023
Showing 1-2 of 2 results.