A120153 a(n) = 7 + floor((2 + Sum_{j=1..n-1} a(j))/3).
7, 10, 13, 17, 23, 31, 41, 55, 73, 97, 130, 173, 231, 308, 410, 547, 729, 972, 1296, 1728, 2304, 3072, 4096, 5462, 7282, 9710, 12946, 17262, 23016, 30688, 40917, 54556, 72741, 96988, 129318, 172424, 229898, 306531, 408708, 544944
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
function f(n,a,b) t:=0; for k in [1..n-1] do t+:= a+Floor((b+t)/3); end for; return t; end function; g:= func< n,a,b | f(n+1,a,b)-f(n,a,b) >; A120153:= func< n | g(n,7,2) >; [A120153(n): n in [1..60]]; // G. C. Greubel, Jun 15 2023
-
Mathematica
nxt[{t_,a_}]:=Module[{c=Floor[(23+t)/3]},{t+c,c}]; Rest[Transpose[ NestList[ nxt,{0,7},40]][[2]]] (* Harvey P. Dale, Oct 08 2015 *)
-
SageMath
@CachedFunction def A120153(n): return 7 + (2 + sum(A120153(k) for k in range(1,n)))//3 [A120153(n) for n in range(1,61)] # G. C. Greubel, Jun 15 2023