A120172 a(n) = 3 + floor((2 + Sum_{j=1..n-1} a(j))/5).
3, 4, 4, 5, 6, 7, 9, 11, 13, 15, 18, 22, 26, 32, 38, 46, 55, 66, 79, 95, 114, 137, 164, 197, 236, 283, 340, 408, 490, 588, 705, 846, 1015, 1218, 1462, 1754, 2105, 2526, 3031, 3638, 4365, 5238, 6286, 7543, 9052, 10862, 13034, 15641, 18769, 22523, 27028, 32433
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
function f(n, a, b) t:=0; for k in [1..n-1] do t+:= a+Floor((b+t)/5); end for; return t; end function; g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >; A120172:= func< n | g(n, 3, 2) >; [A120172(n): n in [1..60]]; // G. C. Greubel, Dec 25 2023
-
Mathematica
nxt[{a_,ls_}]:=Module[{x=Floor[(17+ls)/5]},{x,ls+x}]; Transpose[ NestList[ nxt,{3,3},60]][[1]] (* Harvey P. Dale, Jun 11 2014 *)
-
SageMath
@CachedFunction def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//5 def A120172(n): return f(n, 3, 2) [A120172(n) for n in range(1, 61)] # G. C. Greubel, Dec 25 2023
Extensions
More terms from Harvey P. Dale, Jun 11 2014