cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120210 Integer squares y from the smallest solutions of y^2 = x*(a^N - x)*(b^N + x) (elliptic line, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a.

Original entry on oeis.org

20, 30, 156, 600, 420, 1640, 3660, 520, 2590, 7140, 1224, 10920, 8190, 20880, 32580, 4872, 19998, 5220, 48620, 69960, 3150, 41470, 97656, 132860, 19080, 76830, 176820, 230880, 131070, 12740, 296480, 11100, 375156, 52360, 209950, 468540, 64080
Offset: 1

Views

Author

Keywords

Comments

The case x congruent to 0 mod b or b congruent to 0 mod x is frequent (e.g., A120212). Note that the triples a = 3, b = 4, c = 5 and a = 4, b = 3, c = 5 provide a different result for (x, y).
The natural solution is y = c * b * (c-b) and x = b * (c-b) with c hypotenuse in the triple. - Giorgio Balzarotti, Jul 19 2006

Examples

			First primitive Pythagorean triple: 3, 4, 5.
Weierstrass equation: y^2 = x*(3^2 - x)*(4^2 + x).
Smallest integer solution: (x, y) = (4,20).
First element in the sequence: y = 20.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47.

Crossrefs

Programs

  • Maple
    flag:=1; x:=0; # a, b, c primitive Pythagorean triple
    while flag=1 do x:=x+1; y2:=x*(a^2-x)*(x+b^2); if (floor(sqrt(y2)))^2=y2 then print(sqrt(y2)); flag:=0; fi; od;