A120210 Integer squares y from the smallest solutions of y^2 = x*(a^N - x)*(b^N + x) (elliptic line, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a.
20, 30, 156, 600, 420, 1640, 3660, 520, 2590, 7140, 1224, 10920, 8190, 20880, 32580, 4872, 19998, 5220, 48620, 69960, 3150, 41470, 97656, 132860, 19080, 76830, 176820, 230880, 131070, 12740, 296480, 11100, 375156, 52360, 209950, 468540, 64080
Offset: 1
Keywords
Examples
First primitive Pythagorean triple: 3, 4, 5. Weierstrass equation: y^2 = x*(3^2 - x)*(4^2 + x). Smallest integer solution: (x, y) = (4,20). First element in the sequence: y = 20.
References
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47.
Programs
-
Maple
flag:=1; x:=0; # a, b, c primitive Pythagorean triple while flag=1 do x:=x+1; y2:=x*(a^2-x)*(x+b^2); if (floor(sqrt(y2)))^2=y2 then print(sqrt(y2)); flag:=0; fi; od;
Comments