A120224 a(n) is the minimal number k>=n such that n+k and n*k+1 are primes.
1, 3, 4, 7, 6, 7, 10, 9, 14, 13, 18, 19, 24, 15, 16, 21, 24, 29, 22, 21, 22, 31, 30, 43, 28, 33, 34, 39, 32, 41, 36, 39, 34, 37, 66, 43, 60, 41, 50, 43, 42, 55, 46, 53, 52, 51, 50, 59, 52, 51, 56, 55, 56, 55, 58, 75, 74, 69, 68, 67, 66, 75, 74, 67, 86, 83, 70, 89, 70, 79, 102, 79
Offset: 1
Keywords
Examples
a(3)=4 because 3+4=7 and 3*4+1=13 are prime; a(8)=9 because 8+9=17 and 8*9+1=73 are prime,
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Reap[Do[Do[If[PrimeQ[{n+x, n*x+1}]=={True,True},Sow[x];Break[]],{x, n,1000}],{n,120}]][[2,1]] mnk[n_]:=Module[{k=n},Until[AllTrue[{n+k,n*k+1},PrimeQ],k++];k]; Join[{1},Array[mnk,80,2]] (* Harvey P. Dale, May 12 2025 *)
Comments