A120225 a(n) is the minimal number k>n such that n+k and n*k+1 are primes.
2, 3, 4, 7, 6, 7, 10, 9, 14, 13, 18, 19, 24, 15, 16, 21, 24, 29, 22, 21, 22, 31, 30, 43, 28, 33, 34, 39, 32, 41, 36, 39, 34, 37, 66, 43, 60, 41, 50, 43, 42, 55, 46, 53, 52, 51, 50, 59, 52, 51, 56, 55, 56, 55, 58, 75, 74, 69, 68, 67, 66, 75, 74, 67, 86, 83, 70, 89, 70, 79, 102, 79
Offset: 1
Keywords
Examples
a(3)=4 because 3+4=7 and 3*4+1=13 are prime; a(8)=9 because 8+9=17 and 8*9+1=73 are prime,
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Reap[Do[Do[If[PrimeQ[{n+x, n*x+1}]=={True,True},Sow[x];Break[]],{x, n+1,1000}],{n,120}]][[2,1]] mnk[n_]:=Module[{k=n+1},While[!AllTrue[{n+k,n*k+1},PrimeQ],k++];k]; Array[ mnk,80] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 15 2015 *)
Comments