A120247 Triangle of Hankel transforms of binomial(n+k, k).
1, 1, -1, 1, -3, -1, 1, -6, -10, 1, 1, -10, -50, 35, 1, 1, -15, -175, 490, 126, -1, 1, -21, -490, 4116, 5292, -462, -1, 1, -28, -1176, 24696, 116424, -60984, -1716, 1, 1, -36, -2520, 116424, 1646568, -3737448, -736164, 6435, 1, 1, -45, -4950, 457380, 16818516, -133613766, -131589315, 9202050, 24310, -1
Offset: 0
Examples
Triangle begins 1; 1, -1; 1, -3, -1; 1, -6, -10, 1; 1, -10, -50, 35, 1; 1, -15, -175, 490, 126, -1; 1, -21, -490, 4116, 5292, -462, -1; 1, -28, -1176, 24696, 116424, -60984, -1716, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
p:= func< m,k | k eq 0 select 1 else (&*[Binomial(m+j, k+1): j in [1..k]]) >; A120247:= func< n,k | (-1)^Floor((k+1)/2)*p(n,k)/p(k,k) >; [A120247(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2023
-
Maple
A120247 := proc(n,k) (cos(Pi*k/2)-sin(Pi*k/2))*mul(binomial(n+j+1,k+1),j=0..k-1)/mul(binomial(k+j+1,k+1),j=0..k-1) ; simplify(%) ; end proc: # R. J. Mathar, Mar 22 2013
-
Mathematica
p[m_, k_]:= Product[Binomial[m+j, k+1], {j,k}]; T[n_, k_]:= (-1)^Floor[(k+1)/2]*p[n,k]/p[k,k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 15 2023 *)
-
SageMath
def p(m,k): return product(binomial(m+j+1,k+1) for j in range(k)) def A120247(n,k): return (-1)^((k+1)//2)*p(n,k)/p(k,k) flatten([[A120247(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 15 2023
Formula
T(n, k) = (cos(pi*k/2) - sin(pi*k/2))*( Product{j=0..k-1} C(n+j+1, k+1)/Product{j=0..k-1} C(k+j+1, k+1) ).
Comments