cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120248 a(n) = Product_{k=0..n} C(n+k+2, n+2).

Original entry on oeis.org

1, 4, 75, 7056, 3457440, 9032601600, 127843321480875, 9917120529316000000, 4253520573615071657074176, 10156681309872614660803421798400, 135766978921156343322148046967386880000, 10205737152660536205131284348877857357824000000
Offset: 0

Views

Author

Paul Barry, Jun 12 2006

Keywords

Comments

Divisors in number triangle A120247.

Crossrefs

Cf. A120247.

Programs

  • Magma
    A120248:= func< n | (&*[Binomial(n+j+2, n+2): j in [0..n]]) >;
    [A120248(n): n in [0..20]]; // G. C. Greubel, Mar 16 2023
    
  • Mathematica
    Table[Gamma[n+2]*BarnesG[2*n+4]/((Gamma[n+3])^(n-1)*BarnesG[n+4]^2), {n,0,20}] (* G. C. Greubel, Mar 16 2023 *)
  • PARI
    a(n) = prod(k=0, n, binomial(n+k+2, n+2)); \\ Michel Marcus, Mar 16 2023
  • SageMath
    def A120248(n): return product( binomial(n+j+2, n+2) for j in range(n+1))
    [A120248(n) for n in range(21)] # G. C. Greubel, Mar 16 2023
    

Formula

a(n) = Gamma(n+2)*BarnesG(2*n+4)/((Gamma(n+3))^(n-1)*BarnesG(n+4)^2). - G. C. Greubel, Mar 16 2023
a(n) ~ A * 2^(47/12 + 11*n/2 + 2*n^2) / (exp(19/6 + 2*n + n^2/2) * Pi^((n+1)/2) * n^(5/12 + n/2)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023

A133815 Square array of Hankel transforms of binomial(n+k,floor((n+k)/2)), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, -1, 2, 1, 1, -1, 3, 3, 1, 1, 1, 4, -6, 6, 1, 1, 1, 5, -10, 20, 10, 1, 1, -1, 6, 15, 50, -50, 20, 1, 1, -1, 7, 21, 105, -175, 175, 35, 1, 1, 1, 8, -28, 196, 490, 980, -490, 70, 1, 1, 1, 9, -36, 336, 1176, 4116, -4116, 1764, 126, 1
Offset: 0

Views

Author

Paul Barry, Sep 24 2007

Keywords

Comments

T(n+1,k) is the Hankel transform of binomial(n+k, floor((n+k)/2)).
Even-indexed columns count tilings of hexagons: A002415 (<2,n,2>), A047819 (<3,n,3>), A047835 (<4,n,4>), etc.

Examples

			Array begins
  1,    1,    1,    1,    1,    1, ...
  1,    1,    2,    3,    6,   10, ...
  1,   -1,    3,   -6,   20,  -50, ...
  1,   -1,    4,  -10,   50, -175, ...
  1,    1,    5,   15,  105,  490, ...
  1,    1,    6,   21,  196, 1176, ...
As a number triangle, T(n-k,k) gives
  1;
  1,   1;
  1,   1,   1;
  1,  -1,   2,   1;
  1,  -1,   3,   3,   1;
  1,   1,   4,  -6,   6,   1;
  1,   1,   5, -10,  20,  10,   1;
  1,  -1,   6,  15,  50, -50,  20,   1;
		

Crossrefs

Programs

  • Magma
    F:= Floor;
    function t(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return (-1)^F(n/2);
      elif (k mod 2) eq 0 then return (&*[ Binomial(n+F(k/2)+j, F(k/2))/Binomial(F(k/2)+j, F(k/2)) : j in [0..F((k-2)/2)] ]);
      else return (-1)^F(n/2)*(&*[ Binomial(n+F((k+1)/2)+j, F((k+1)/2))/Binomial(F((k+1)/2)+j, F((k+1)/2)) : j in [0..F((k-3)/2)] ]);
      end if;
    end function;
    // [[t(n,k): k in [0..10]]: n in [0..10]];
    A133815:= func< n,k | t(n-k, k) >;
    [A133815(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 16 2023
    
  • Mathematica
    T[ n_, m_] := With[{k = Quotient[m + 1, 2]}, (-1)^(Quotient[n, 2] m) Product[ Binomial[n + k + j, k] / Binomial[k + j, k], {j, 0, k - 1 - Mod[m, 2]}]];
    (* Michael Somos, Apr 03 2021 *)
  • PARI
    alias(C, binomial);
    T(n,k) = if (k % 2 == 0, prod(j=0, (k-2)/2, C(n+k/2+j,k/2)/C(k/2+j,k/2)), (cos(Pi*n/2)+sin(Pi*n/2))*prod(j=0, (k-3)/2, C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)));
    tabl(nn) = matrix(nn, nn, n, k, round(T(n-1, k-1))); \\ Michel Marcus, Dec 10 2016
    
  • PARI
    T(n, m) = my(k = (m+1)\2); (-1)^(n\2*m) * prod(j=0, k-1-m%2, binomial(n+k+j, k) / binomial(k+j, k)); /* Michael Somos, Apr 03 2021 */
    
  • SageMath
    def f(k): return (k+1)//2
    def t(n, k): return (-1)^(k*(n//2))*product(binomial(n+f(k) +j, f(k))/binomial(f(k) +j, f(k)) for j in range(f(k-1)))
    def A133815(n,k): return t(n-k, k)
    flatten([[A133815(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 16 2023

Formula

T(n,k) = if(k mod 2 = 0, Product_{j=0..(k-2)/2} C(n+k/2+j,k/2) / C(k/2+j,k/2), (cos(Pi*n/2) + sin(Pi*n/2))*Product_{j=0..(k-3)/2} C(n+(k+1)/2+j,(k+1)/2)/C((k+1)/2+j,(k+1)/2)).
Showing 1-2 of 2 results.