A120257 Triangle of Hankel transforms of certain binomial sums.
1, 2, -1, 3, -6, -1, 4, -20, -20, 1, 5, -50, -175, 70, 1, 6, -105, -980, 1764, 252, -1, 7, -196, -4116, 24696, 19404, -924, -1, 8, -336, -14112, 232848, 731808, -226512, -3432, 1, 9, -540, -41580, 1646568, 16818516, -24293412, -2760615, 12870, 1, 10, -825, -108900, 9343620, 267227532, -1447482465
Offset: 0
Examples
Triangle begins 1; 2, -1; 3, -6, -1; 4, -20, -20, 1; 5, -50, -175, 70, 1; 6, -105, -980, 1764, 252, -1; 7, -196, -4116, 24696, 19404, -924, -1; 8, -336, -14112, 232848, 731808, -226512, -3432, 1;
Crossrefs
Cf. A120258.
Programs
-
PARI
T(n, k) = (-1)^((k+1)\2) * prod(j=0, n-k-1, binomial(2*k+2+j, k+1)/binomial(k+1+j, j)); \\ Michel Marcus, Jan 13 2022
Formula
T(n, k) = (cos(Pi*k/2) - sin(Pi*k/2)) * Product_{j=0..n-k-1} C(2k+2+j, k+1)/C(k+1+j, j).
Comments